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Abstract Requirements uncertainty refers to changes that occur to requirements
during the development of software. In complex projects, this leads to task uncer-
tainty, with engineers either under- or over-engineering the design. We present a
proposed commitment uncertainty approach in which linguistic and domain-
specific indicators are used to prompt for the documentation of perceived uncer-
tainty. We provide structure and advice on the development process so that engi-
neers have a clear concept of progress that can be made at reduced technical risk.
Our contribution is in the evaluation of a proposed technique of this form in the
engine control domain, showing that the technique is able to suggest design ap-
proaches and that the suggested flexibility does accommodate subsequent changes
to the requirements. The aim is not to replace the process of creating a suitable
architecture, but instead to provide a framework that emphasises constructive de-
sign action.

6.1 Introduction

In a conventional development process, a requirements writer creates an expres-
sion of his needs, to be read by a requirements reader. The requirements reader
then creates a system to meet that need [1]. A particular problem faced by devel-
opers is the gradual squeezing of implementation time as deadlines become tighter
and requirements are not fully agreed and validated until late in the development
programme. Our experience with product-line modelling and architecture sug-
gests that an uncertain requirement may be treated as a miniature product line, al-
beit one that varies over time rather than between different products. In the ideal
case, this will derive flexibility requirements that help to accommodate subsequent
fluctuation in the requirements, allowing the engineer to commit to the design
even though the requirements are still uncertain. In this chapter, we take inspira-
tion from uncertainty analysis, product-line engineering and risk management to
synthesise an approach that provides insight into the flexibility needs of imple-
mentations driven by uncertain requirements.

Our approach, which is described in detail in Section 6.2 below, has two stages.
Firstly, we use a combination of lightweight linguistic indicators and domain ex-
pertise to identify potential uncertainties in natural-language requirements, either
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in terms of the technical content of a requirement or of its precise meaning. We
then use these uncertainties as the basis of a process of restatement of the original
requirement as one or more ‘shadow’ requirements, which take account of
changes which might arise in the interpretation of the original as the development
proceeds. Each ‘shadow requirement’ is tagged with an indication as to the likeli-
hood of its being the actual intended requirement. System design can then pro-
ceed with a clearer understanding of the risk of particular implementation choices.
We refer to the approach as ‘commitment uncertainty’, to reflect the trade-off be-
tween requirements uncertainty and the need for (a degree of) design commitment
at an early stage in the development process.

Our claim is that our particular choice of techiques provides up-front informa-
tion about flexibility needs such that the resulting implementation is better able to
cope with the eventual agreed requirements. Our contribution includes details of
the choice of techniques, their specialisation and evaluation of the effectiveness of
the resulting approach.

The remainder of the introduction provides a review of the areas of literature
that inspire this work. Then, in the following section, we describe our approach to
commitment uncertainty, followed by an evaluation of the approach in two sepa-
rate studies.

6.1.1 Product-Line Engineering

Product-line engineering enables the provision of flexibility constrained to a par-
ticular scope [2]. The principal processes of product-line engineering are domain
engineering, in which the desired product variation is modelled and supported
with reusable artefacts and processes; and application engineering, in which the
predefined processes configure and assemble the predefined artefacts to create a
particular product [3]. The ability to rapidly create products within the predefined
scope offsets the up-front cost of domain engineering, but it relies on a high de-
gree of commonality between products [4] to reduce the size and complexity of
the product repository.

Several of the technologies specific to product-line engineering are useful when
dealing with uncertainty. Feature models [5] provide a view of the configuration
space of the product line, documenting the scope of available products and con-
trolling the configuration and build process. These models present a simple selec-
tion/dependency tree view of the underlying product concepts [6]. Topics in fea-
ture modelling include staged configuration [7] in which a process is built around
partially-configured feature models that represent subsets of the available prod-
ucts, and feature model semantics [8] in which the underlying propositional struc-
ture of the feature model is examined. The former is useful in uncertainty analysis
as it provides a way for the design to track the gradual evolution of changes to the
requirements; the latter is problematic because it generally normalises the proposi-
tional selection structure into a canonical form. Such a normalised model could
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make it difficult to precisely identify and manage variation points that exist be-
cause of uncertainty.

Domain-specific languages [9] often complement feature models; while a fea-
ture tree is good for simple dependencies and mutual exclusions, a domain-
specific language is better able to cope with multiple parameters with many possi-
ble values. Domain-specific languages are typically used along with automated
code generation and assembly of predefined artefacts [10]. Given suitable experi-
ence and tool support for small-scale domain-specific languages, it may be feasi-
ble to use such approaches in making a commitment to a design for uncertain re-
quirements.

In addition to these techniques, some more general architectural strategies are
often used with product-line engineering, and would be suitable candidates for de-
sign decisions for uncertain requirements. These include explicitly-defined ab-
stract interfaces that constrain the interactions of a component; decoupling of
components that relate to different concerns; and provision of component parame-
ters that specialise and customise components to fit the surrounding context [11].

6.1.2 Requirements Uncertainty and Risk

Requirements uncertainty is considered here to be the phenomenon in which the
requirement as stated is believed by the requirements reader not to be the require-
ment that is intended by the requirements writer; that once the system is delivered,
the requirements writer will detect the discrepancy and complain about the mis-
match [12]. In dealing with requirements uncertainty, approaches take into ac-
count both organisational and linguistic concerns.

Uncertainty is considered to be present throughout a project, and presents a risk
both to that project and to the organisation as a whole [13]. To deal with uncer-
tainty from an organisational perspective, it must be identified, managed and con-
trolled (see e.g. Saarinen and Vepsäläinen [14] for a more complete overview of
risk management in this area) in tandem with other technical and programme risk
activities. More pragmatically, in a study of U.S. military projects, Aldaijy [15]
identified a strong link between requirements uncertainty and task uncertainty.
That is, when faced with the prospect that the requirements may change, engineers
often lack clarity on what tasks to perform.

Techniques to deal with uncertainty vary widely in their nature and scope. A
significant body of work is aimed at linguistic techniques, to control language and
identify problems in ambiguous requirements for feedback to the requirements
writer [16,17]. From this literature, we recognise the important trade-off between
the “weight” of the language analysis and the effort involved in obtaining useful
information, as evidenced by the use of lightweight techniques that only use a
shallow parse of the requirements [18] or targeted techniques that ignore ambigui-
ties that are easy to detect in favour of highlighting those that are difficult to work
with [19].
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Once uncertainty is detected, it should at a minimum be recorded, e.g. as a
probability distribution [20]. While uncertainty remains, there is an increased
possibility of the requirements being inconsistent; this should be respected and
maintained throughout the lifecycle and only forced to be resolved when neces-
sary [21]. A further step is to use the information in negotiating for clearer re-
quirements with the requirements writer, a strategy that is coloured by the pro-
ject’s conceptualisation of the requirements writer (e.g. as explained by Moynihan
[22]).

6.2 The Commitment Uncertainty Process

Our approach to requirements uncertainty assumes that it is possible to explicitly
analyse requirements and context for potential future changes and provide insight
into the design phase so that the design accommodates those changes. In this re-
spect, the approach is identical to a conventional product-line engineering ap-
proach (albeit with temporal variation rather than population variation) and is
similar in its structure to other requirements-uncertainty approaches that aim to in-
fluence the design directly rather than waiting to negotiate further with the re-
quirements writer. For example, Finkelstein and Bush report [23] on an uncer-
tainty approach that considers scenarios in different versions of future reality as a
basis for stability assessment of goal-based requirements representations. Within
this structure of suggesting derived requirements to control flexibility, we use a
classification of requirements language issues that is broadly similar to the check-
list decomposition proposed by Kamsties and Paech [17]. In addition to classify-
ing the problem in the requirement, we also classify the situation of the require-
ments writer that might have led to the uncertainty, building on the insights found
in Moynihan’s requirements-uncertainty analysis of IS project managers [22]. Fi-
nally, we introduce one important terminological distinction: in addition to re-
quirements uncertainty, which is associated with the problems in communicating
the requirement, we also refer to requirements volatility, the change that could oc-
cur to the requirement.

6.2.1 Process Overview

The commitment uncertainty process is shown in Figure 6.1. In sub-process p1 we
examine requirements for indicators of uncertainty, taking into account both the
requirement and its assumed development context. The techniques employed in
sub-process p1 are described in detail in Sections 6.2.2 and 6.2.3 below. In p2 we
create flexibility requirements by factoring the uncertainty specification into vola-
tile and non-volatile parts. This sub-process is detailed in Section 6.2.4. Finally,
in Section 6.2.5, we describe sub-process p3, in which we suggest possible imple-
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mentation strategies for the requirements based on a predefined prompt list for the
scope of the product in which the volatility lies.

Fig. 6.1. Overview of the commitment uncertainty process. Specific materials on the left-hand
side are explained in this chapter. The clarification process on the right-hand side is outside of
the scope of this chapter.

6.2.2 Requirements Uncertainty Prompts

The checklist for requirements issues is as shown in Table 6.1. The list contains
issues that are related to the linguistic structure of the requirement as well as is-
sues that relate to the technical content of the requirement. In this analysis tech-
nique, we recommend an explicit record of uncertainty, linking to relevant sup-
porting information, to enable effective impact analysis. This is similar to the use
of domain models and traceability in product-line engineering, and is essential to
effective uncertainty risk management.

In practice, a single requirement may include many forms of uncertainty, which
may interact with one another. Rather than trying to classify all such interactions,
the analysis prompts the reader into thinking about the requirement from different
standpoints. In some situations, no particular reason for the uncertainty will
emerge. A pragmatic trade-off must be made between the effort of explaining the
uncertainty and the costs saved by performing the analysis.

As an example, consider this sample requirement:
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110. The system shall provide an indication of the IDG oil temperature status to the
aircraft via ARINC.

This requirement suffers from (at least) two different uncertainties. Firstly, the
phrase “an indication of the IDG oil temperature status” contains words (“indica-
tion”, “status”) that are either redundant (meaning ‘provide the IDG oil tempera-
ture’) or poorly-defined (meaning to get the status of the oil temperature, and then
transmit an indication of the status).

In all likelihood, the real requirement is the following:

110a. The system shall provide its measurement of the IDG oil temperature to the aircraft
via ARINC.

The second issue is that the requirement does not directly identify where to find
out information about the message format or value encoding. The link could be
written into the requirement:

110b. The system shall provide its measurement of the IDG oil temperature to the aircraft
via ARINC according to protocol P100-IDG.

It is more likely that the link would be provided through a tool-specific trace-
ability mechanism to an interface control document.

6.2.3 Identifying Requirements Writer Context

We recognise that there is also value in trying to understand the context within
which a requirement is written; given a set of such requirements, it may be possi-
ble to infer details of the context and hence suggest specific actions to take to ad-
dress uncertainty. Table 6.2 explains possible reasons for problems appearing in
requirements. Rather than capturing every requirements issue, we instead present
possible issues for the engineer to consider when deciding on how much informa-
tion to feed back to the requirements writer and when. We make no claim at this
stage that the table is complete; however, it covers a number of different aspects
that might not ordinarily be considered, and on that basis we feel it should be con-
sidered at least potentially useful.

In practice, it will rarely be possible to obtain a credible picture of the require-
ments writer context. Nevertheless, it can be useful to consider the possible con-
text to at least try to understand and accommodate delays in the requirements.
Explicitly recording assumptions about the writer also facilitates useful discussion
among different engineers, particularly if there are actually multiple issues behind
the problems in a particular requirement. Finally, the overall benefit of this identi-
fication step is that it gives clear tasks for the engineer, reducing the so-called
“task uncertainty” and improving the ability to make useful progress against the
requirements.
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Table 6.1. Uncertainty indicator checklist.

Area Uncertainty Form

Incompleteness Unfinished
requirement

A part of the requirement has not yet been written.
There could be a trailing unfinished clause or an ellipsis.
There will usually be little to indicate how to fill the
gap.

Placeholders A placeholder is used for part of the requirement. This
is typically some metasyntactic expression – perhaps
“TBD” or “[upper limit]”. In some organisations,
placeholders may be given as information paragraphs or
marked-up notes.

Missing
counterpart

In many cases, requirements come as a set. For exam-
ple, there may be a startup requirement for each mode of
a system. Even with little domain knowledge, it should
be apparent when part of the set is missing.

Ambiguity Under-
specification

An underspecified requirement constrains the imple-
mentation to some extent, but leaves options open. In
some cases, this is a careful abstraction to avoid over-
constraining the implementation. In others, the re-
quirement is simply not concrete enough.

Terminology Some terminology in the requirement is not well-
defined; it needs qualification, better definition or re-
placement.

Syntactic
structure

The sentence has a structure that can be read in more
than one plausible way. This areas is well-studied in
linguistic approaches to requirements ambiguity [18,24]

Commitment Incorrectness There is some detail in the requirement that is demon-
strably incorrect, through a scenario or some logical in-
ference.

Overspecification The requirement includes more detail than necessary,
giving awkward or infeasible constraints.

Mislabelling Misplaced
requirement

The positioning of the requirement (section heading, in-
formative context) conflicts with its content.

Mislabelled do-
main information

The statement is presented as a requirement but it con-
tains only definitions, therefore technically not requiring
any action.

6.2.4 Recording and Validating Uncertainties

To record the uncertainty in a way that is useful to all interested stakeholders, we
advocate a multi-stage recording process shown in Figure 6.2. First, the original
requirement and uncertainty analysis are identified. Then, the requirement is re-
stated by identifying volatile parts and presenting a miniature product line view of
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the requirement. The exact process here is one of engineering judgement based on
the form of the uncertainty and the reason behind it; the interested reader is re-
ferred to a more comprehensive work on product lines (e.g. Bosch [3] or Weiss
and Lai [9]) for further elaboration.

With the requirement volatility captured, the requirement is then restated into
the same form as the original requirement. This is the shadow requirement, and
represents what the engineer will actually work to. The final step is to double-
check the result by checking that the original requirement, as stated, is one possi-
ble instantiation of the shadow requirement.

Consider the sample requirement 110 again:

110. The system shall provide an indication of the IDG oil temperature status to the
aircraft via ARINC.

The volatility might be specified as follows:

Stable part:
• Sending data over ARINC, part of overall ARINC communications.
• Sending IDG oil temperature or derived values, depending on reading or
synthesising value
Volatile part:
• Data to be sent
• Message format / encoding
Likely changes:
• Data to be sent is one or more of:
• IDG oil temperature reading
• IDG oil temperature limits, rate of change
• Details of faults with that reading
• Presence/absence of faults
• Details of current sensing method
• Value encoding will depend on data to be sent
Instantiations:
110a. The system shall provide its measurement of IDG oil temperature to the aircraft via
ARINC.
110b. The system shall provide a count of current IDG oil temperature faults to the
aircraft via ARINC.
110c. The system shall provide IDG oil temperature, operating limits and rate of change
to the aircraft via ARINC.

One possible shadow requirement for the IDG oil temperature requirement
would be:

110x. The system shall provide (IDG oil temperature|IDG oil temperature faults|IDG oil
temperature presence/absence of faults|IDG oil temperature, operating limits and rate of
change) to the aircraft via ARINC [using protocol (P)].

An alternative approach is to derive explicit flexibility requirements to guide
the implementation:

F.110a. The impact of changes to the feature of the IDG oil temperature to send on the
delivery of IDG information in requirement 110 shall be minimised.
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F.110b. The impact of changes to the communication format on the delivery of IDG
information to the aircraft shall be minimised.

Table 6.2. Writer context checklist.

Reason Details

Novelty The requirements writer, and perhaps also the reader, is unfamiliar with
this area of requirements. This is either slowing the writer down (unfin-
ished requirements) or causing premature commitment (incorrect require-
ments). Uncertainty should decrease over time. Detailed feedback on the
requirements may be unwelcome early on.

Complexity The requirements specify something complex, and the difficulty of dealing
with the complexity leads to unfinished, ambiguous or conflicting require-
ments. They may also be copied from previous requirements to reuse a
successful structuring mechanism.

Concurrent Delay The requirements writer has yet to perform the work towards the require-
ment; the details depend on the results of processes that are incomplete.
This often happens in large projects with multiple subsystems and complex
interfaces. Eventually, the requirement will be properly defined. In this
case, feedback is likely to be welcome.

Pressure The requirements writer is under pressure; the final requirement has not yet
been defined. This could arise from areas such as inter-organisational poli-
tics, financial arrangements or resourcing. Feedback to suggest clarifica-
tions may not be effective.

Language Gap The requirements writer uses language differently to the requirements
reader. He may be writing in a non-native language but using native idi-
oms and grammar, or he may apply the rules of the language differently to
the expectation of the reader. This subject is studied at length in linguistic
approaches to requirements [16].

Context Gap The uncertainty arises from the difference in information available to the
reader compared to the writer. The writer may make assumptions that are
not made explicit, or the reader may know more about the target platform.
It will be useful to document explicit assumptions to help support decision-
making.

Intent Gap It may be unclear how the requirements writer intends to constrain the im-
plementation. This can occur with abstractions; distinguishing between de-
liberate and accidental generality can be difficult. Another possibility is a
set of “soft” requirements to trade off, presented as hard constraints. This
may happen if the contract does not allow for appropriate negotiation. Is-
sues such as these indicate that extra effort in design trade-offs and flexible
architecture may be appropriate.

Medium The communications medium between writer and reader may constrain the
information that may be represented in a cost-effective way. The medium
includes the tools and experience available to the writer and reader. For
example, the reader may be able to read text and diagrams, but not view
links between the two.
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Fig. 6.2. Overview of deriving flexibility requirements. Volatility (expected changes) is speci-
fied and then factored into the requirement to create a family of related requirements

6.2.5 Suggesting Design Approaches

It is not intended that the commitment uncertainty approach should constrain the
type of implementation chosen to accommodate the identified uncertainty. Never-
theless, it is useful to give advice on the type of design approach that is likely to
be successful, as a way to further overcome task uncertainty and improve the like-
lihood of quickly arriving at a suitable design.
The advice is based on a recognition that a design approach will typically respond
to a group of requirements. We take as input the scale of the volatility in that
group of requirements and produce a suggested list of design approaches to con-
sider, in a particular order. The intent is not to restrict the engineer to these design
approaches, nor to constrain the engineer to select the first approach for which a
design is possible; the aim is simply to help the engineer to quickly arrive at some-
thing that is likely to be useful.
Our approach is therefore much coarser than more considered and involved ap-
proaches such as those of Kruchten [11] or Bosch [3]. The mapping is shown in
Table 6.3. In this table, the scale of design volatility is broadly categorised as “pa-
rameter” when the volatility is in a single parameterisable part of the require-
ments; “function” when the behaviour changes in the volatile area; and “system”
when the volatility is in the existence or structure of a whole system. The engi-
neer is encouraged to choose whichever of these designations best matches the
volatility, and then use his existing engineering skills to arrive at designs that are



11

prompted by the entries under that heading: “Parameterisation” to include suitable
data types and parameters in the design; “Interfaces and Components” to consider
larger-scale interfacing and decoupling; and “Auto-Generation” to build a domain-
specific language or component configuration scripting system to accommodate
the volatility.

Table 6.3. Mapping from volatility scale to suggested design approaches.

Parameter Function System

Parameterisation Interfaces and Components Interfaces and Components

Interfaces and Components Parameterisation Auto-Generation

Auto-Generation Auto-Generation

6.2.6 Ordering Design Decisions

In software, major design decisions are traded off and captured in the software ar-
chitecture; functionality is then implemented with respect to this architecture. In
some complex design domains, however, there are multiple competing design de-
pendencies that can be difficult to resolve. To assist in making progress in this
context, we provide a framework that tracks design dependencies and resolves de-
sign decisions hierarchically to produce the complete design. The intended effect
is that the areas that are most volatile are those that are least fundamental to the
structure of the design. This technique makes use of product-line concepts to rep-
resent optionality.

In addition to dependencies between design decisions and (parts of) require-
ments, any part of a design may depend on part of an existing design commitment.
This includes both communicating with an existing design element and reusing or
extending an existing element. These dependencies are the easiest to accommo-
date with indirection and well-defined interfaces. Contextual domain information
is also important, and most design commitments are strongly related to domain in-
formation. The dependency on domain information can be managed through
parameterisation or indirection. The process of uncertainty analysis provides ad-
ditional exposure of contextual issues, helping to reduce the risk associated with
missing context.

In our prototype modelling approach, we explicitly represent dependencies be-
tween design elements in a graphical notation, shown in Figure 6.3. This example
represents the decision to add the IDG oil temperature parameter to the ARINC
table as defined in the interface control document. The decision is prompted by the
requirement to send the information, the availability of the information, and the
availability of a suitable communication mechanism. The result of the decision is
a new entry in a data table to allow the communication of the appropriate value.
While this example is perhaps trivial, it illustrates the important distinction be-
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tween decisions (processes that the user may engage in) and designs (the artefacts
that result from design activity).

Fig. 6.3. Representing dependencies between design elements.

Commitment uncertainty analysis associates volatility with context, require-
ments and design. This may be annotated alongside the decision tracing diagram.
To retain familiarity and compatibility with existing approaches, we base this rep-
resentation on conventional feature modelling notations, as shown in Figure 6.4.
A feature model view of design decision volatility is a powerful visual tool to help
appreciate the impact of volatility on the design approach. It is expected that this
type of visualisation will be of most benefit when communicating involved tech-
nical risk deliberations to interested stakeholders.

Once a body of design decisions has been produced, individual design com-
mitments may be resolved together to create design solutions. The granularity of
resolution is not fixed; it will depend on the complexity of the design decisions,
their dependencies and their volatility. Similarly, the order of design decisions is
not fixed. Any design decision that changes will have an impact on later design
decisions, so the intent of design decision resolution is to defer more volatile deci-
sions as late as possible in the decision sequence. Ordinarily, the design decision
sequence is chosen by creating a partial order from the design decision dependen-
cies, adding volatility information and then creating a total order from the result-
ing dependencies. When adding the volatility information, it is important to start
from the most volatile decision and then descend in order of volatility, adding
volatility relationships where they do not conflict with existing relationships.
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Fig. 6.4. Representing volatility with design decisions. The annotation on the left-hand side
shows features (rectangles) with dependencies (arcs) and selection constraints (arc label <1–*>
in this example)

In extreme cases, some reengineering will be needed to arrive at an appropriate
design. For example, it may be advantageous to break a design dependency in or-
der to accommodate a volatility dependency. This will typically prompt a refac-
toring of the existing commitments to accommodate the additional variation from
the volatile design and allow for the design dependency using dependency injec-
tion and inversion of control.
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6.3 Empirical Evaluation

6.3.1 Quantitative Analysis of Effectiveness

In this section, we present the design and results of an experiment to test the theo-
retical effectiveness of the commitment uncertainty approach. For this experi-
ment, we used four instances of the requirements from an engine controller pro-
ject; a preliminary (draft) document P and issued requirements I1, I2 and I3, from
which we elicited changes made to the requirements over time. Since the re-
quirements in this domain are generally expressed at a relatively low level – par-
ticularly with respect to architectural structure – we consider that the requirements
are, for the purposes of this experiment, equivalent to the design.

In the experiment, we created two more flexible versions of P: Pt using conven-
tional architectural trade-off techniques, and Pu using commitment uncertainty
techniques. The hypothesis is that, when faced with the changes represented by
I1–3, Pu accommodates those changes better than Pt, and both Pu and Pt are better
at accommodating changes than P. We consider a change to be accommodated if
the architecture of the design provides flexibility that may be used to implement
the required change. Table 6.4 shows the data for Pu, and Table 6.5 is the equiva-
lent data for Pt. In each table, the ID column gives the associated requirement ID,
then the Scope column identifies whether the requirement was in scope for com-
mitment uncertainty and the Derived column indicates whether a derived re-
quirement was produced from the analysis. The remaining columns evaluate the
two sets of requirements – the original set and the set augmented with derived re-
quirements from the additional analysis. At the bottom of the table, the totals are
presented as both raw totals and a filtered total that excludes the requirements that
were outside the scope of architectural flexibility provision.
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Table 6.4. Uncertainty analysis on randomly-selected requirements.

ID Scope Derived I1-P I1-Pu I2-P I2-Pu I3-P I3-Pu

6 Y Y Y Y Y Y Y Y

20 Y Y Y Y Y Y Y Y

32 Y Y Y Y Y Y Y Y

99 Y Y Y Y Y Y Y Y

105 Y Y Y Y Y Y Y Y

22 Y Y Y Y Y Y Y Y

127 Y Y N Y N Y N Y

5 Y N Y Y Y Y Y Y

39 Y Y N Y N Y N Y

49 Y Y Y Y Y Y N Y

26 Y Y Y Y Y Y Y Y

16 Y Y Y Y Y Y Y Y

113 Y Y Y Y Y Y Y Y

118 Y Y N Y N Y N Y

119 Y Y Y Y Y Y Y Y

50 Y N Y Y Y Y Y Y

107 Y Y N Y N Y N Y

56 N N Y Y Y Y Y Y

12 Y N Y Y Y Y Y Y

60 Y Y Y Y Y Y Y Y

64 Y N Y Y Y Y Y Y

70 Y Y Y Y Y Y Y Y

71 Y Y Y Y Y Y Y Y

110 Y Y N Y N Y N N

2 N N Y Y Y Y Y Y

73 N N Y Y Y Y Y Y

76 Y Y Y Y Y Y Y Y

123 Y Y N Y N Y N Y

137 N N Y Y Y Y Y Y

140 N N Y Y Y Y Y Y

148 N N Y Y Y Y Y Y

151 N N Y Y Y Y Y Y

155 N N Y Y Y Y Y Y

159 N N Y Y Y Y Y Y

162 N N Y Y Y Y Y Y

93 Y Y N Y N Y N Y

94 Y Y N Y N Y N Y

120 Y Y Y Y Y Y Y Y

Y Total 28 24 30 38 30 38 29 37

Filtered 28 24 20 28 20 28 19 27
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Table 6.5. Trade-off analysis on randomly-selected requirements.

ID Scope Derived I1-P I1-Pt I2-P I2-Pt I3-P I3-Pt

19 Y Y Y Y Y Y Y Y

30 Y Y N N N N N N

32 Y N N N N N N N

102 Y Y N N N N N N

106 Y N N N N N N N

127 Y N N N N N N N

10 Y N Y Y Y Y Y Y

38 Y N Y Y Y Y N N

48 Y Y Y Y Y Y Y Y

131 Y N Y Y Y Y Y Y

16 Y Y Y Y Y Y Y Y

113 Y Y Y Y Y Y Y Y

118 Y Y N Y N Y N Y

42 Y N Y Y Y Y Y Y

50 Y N Y Y Y Y Y Y

81 Y N Y Y Y Y Y Y

27 Y N N N N N N N

62 Y Y Y Y Y Y Y Y

67 Y Y Y Y Y Y Y Y

71 Y Y Y Y Y Y Y Y

111 Y Y N Y N Y Y Y

3 Y N Y Y Y Y Y Y

31 N N Y Y Y Y Y Y

76 Y Y Y Y Y Y Y Y

6 Y N Y Y Y Y Y Y

56 N N Y Y Y Y Y Y

109 N N Y Y Y Y Y Y

78 N N Y Y Y Y Y Y

136 N N Y Y Y Y Y Y

142 N N Y Y Y Y Y Y

148 N N Y Y Y Y Y Y

151 N N Y Y Y Y Y Y

154 N N Y Y Y Y Y Y

160 N N Y Y Y Y Y Y

88 Y N Y Y Y Y Y Y

92 N N Y Y Y Y Y Y

96 Y Y Y Y Y Y Y Y

108 N N Y Y Y Y Y Y

Y Total 26 13 30 32 30 32 30 31

Filtered 26 13 18 20 18 20 18 19
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To analyse the hypothesis, we compare the ability of one design to accommo-
date change with the ability of another. This produces contingency tables, dis-
played in Tables 6.6–6.8.

The results indicate that the commitment uncertainty analysis made a signifi-
cant improvement in the ability to accommodate change, while the more conven-
tional trade-off analysis was not as capable. Some caveats should, however, be
stated here. The significance measure here provides an indication of internal va-
lidity. In this particular engineering domain, the use of requirements to stand for
designs is appropriate, since the design process is characterized by the iterative
decomposition of requirements. We note, however, that our findings may not be
applicable in other domains. In terms of the external validity of the study, it is
important to note that our experiment differed from real-world practice in that we
were external observers of the project, with access to the entire lifecycle history.
In practice, it may be more difficult for interested parties to make appropriately
flexible commitments early on in a project. It would be interesting to repeat the
study in a live project, deriving flexibility requirements to which designers were
prepared to commit their choices and then observing the degree to which these re-
quirements proved useful in accommodating later change. It should also be noted
that this work concerns an embedded software system, where there are consider-
able constraints on the design and implementation, and there are objective tests of
system functionality and effectiveness. Design drivers in other domains may, of
course, differ markedly: for example, a successful design might be one which
opens up a new market or incorporates some innovative functionality. In these
cases, the nature of the requirements and design processes are likely to differ
markedly from the aerospace domain, and the effectiveness of our proposed ap-
proach may be less clear.

Table 6.6. Summary of uncertainty analysis against original requirements. Data show signifi-
cant (χ2,p<0.05) improvement over original system.

Y N Y N Y N

I1-P 20 8 I2-P 20 8 I3-P 19 9

I1-Pu 28 0 I2-Pu 28 0 I3-Pu 27 1

Table 6.7. Summary of trade-off analysis against original requirements. No significant im-
provement.

Y N Y N Y N

I1-P 18 8 I2-P 18 8 I3-P 18 8

I1-Pt 20 6 I2-Pt 20 6 I3-Pt 19 7
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Table 6.8. Summary of uncertainty analysis against trade-off analysis. Data show significant
(χ2,p<0.05) improvement of uncertainty analysis against trade-off analysis.

Y N Y N Y N

I1-Pu 28 0 I2-Pu 28 0 I3-Pu 27 1

I1-Pt 20 6 I2-Pt 20 6 I3-Pt 19 7

6.3.2 Qualitative Evaluation of Design Selection

In this study, we investigated the ability of the design prompt sequence approach
to correctly identify appropriate design targets for the implementation of uncer-
tainty-handling mechanisms. The study is based on an internal assessment of
technical risk across a number of engine projects conducted in 2008. We ex-
tracted 8 areas that had been identified as technical risks that were in scope for be-
ing addressed with architectural mechanisms. For each identified technical risk,
we elicited uncertainties and then used the design prompt sequence to generate de-
sign options. Finally, we chose a particular design from the list and recorded both
the position of the design in the list and the match between the chosen design and
the final version of the requirements.
As an example, consider the anonymised risk table entry in Table 6.9. The indi-
vidual uncertainties for this particular instance are elaborated and documented in a
custom tabular format shown in Table 6.10.

The design prompts for “Function, Concurrent” are presented in the order,
components/interfaces, parameterisation and then auto-generation.

The options identified are:

1. Use an abstract signal validation component with interfaces that force the de-
signer to consider raw and validated input signals, power interrupts and signals
for faults. This design ensures that each component encapsulates any uncer-
tainty regarding its own response to power interrupt.

2. Use a parameterised signal validation component that selects its response to
power interrupt from a list of possible responses. The list should be based on
domain expertise and experience in designing robust power interrupt manage-
ment schemes. This is applicable if the range of possible responses can be cap-
tured easily in such a list, and as long as the use of the response selection
mechanism is consistent with certification guidelines for configurable compo-
nents.

3. An auto-generation system may be appropriate for complex parameterisation.
The input configuration is derived from the range of possible input validation
responses to power interrupt. The input language to the auto-generation system
should be easy to use and should be similar to other auto-generation input lan-
guages in use. For this option, the language itself captures and manages the
uncertainty.
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Assessment of these available choices shows that the abstract interface is the
easiest to implement; the parameterisation and auto-generation approaches carry
more specific details of the available interrupt-management schemes, which is not
necessarily a net benefit at this time.

With such a small study, it is difficult to quantify the net benefit of the design
prompt sequence; nevertheless, we feel it is useful to present some observations
on the outcome of the study. The results are shown in Table 6.11.

Table 6.9. Example risk table entry.

Risk Area Specific Risk Particular Instances

Requirements –
Flow-down

Have system-level requirements for reaction
to power supply interrupts been decomposed
into software requirements?

Project Hornclaw refit soft-
ware.

Table 6.10. Custom tabular format for documentation of uncertainty.

Certainties

After a power interrupt, the system initialises afresh and its RAM and program state no longer
represent the state of the environment.

The system can determine some information about the state of the environment from non-
volatile memory.

The only part of the system that will be out of sync after a power interrupt is input validation.

Uncertainties

Type Definition Rationale

Function
Concurrent

Required signal validation after a power interrupt Derivation from the
technical risk con-
cept “requiremens
for reaction to
power supply inter-
rupts”

Firstly, the study showed that the prompts were able to suggest multiple design
oprions for each technical risk area. Contrary to expectations, the first design al-
ternative was not necessarily the alternative that was eventually chosen; moreover,
the last design choice was never selected for use in this study. This suggests that
it may not be directly beneficial to create too many different design choices, al-
though there may be an indirect benefit from the comparison of the second design
choice to the third choice in establishing its relative merit. It should also be noted
that, by forcing designers to consider multiple alternative design solutions (con-
trary to their usual practice), the technique potentially reduces the danger of the
“first plausible design syndrome”, whereby designers commit themselves to the
first apparently workable solution, unwilling to move on from it even when prob-
lems are identified with the design. Put another way, this could be seen as a way
of encouraging engineers to delay design commitments [25] which are viewed by
some as underpinning lean processes [26].
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Secondly, it was useful during the study to note the applicability of the design
choices to communicate contextual assumptions from the design phase for valida-
tion when changes occur. For example, some design options could result in un-
used inputs once changes are made, which could impact on testability.

Lastly, we found that in some areas one uncertainty would lead on to further
uncertainties. This was particularly the case in novel design areas, where an un-
certainty structure arose from consideration of the suggested design alternatives.
We expect that this is more closely related to a pattern-based approach to product-
line feature modelling than directly to uncertainty analysis, and the phenomenon
would merit closer study.

Again, we should express some caveats concerning the wider applicability of
these observations. The study reported in this chapter is small, and, because of
this, it is difficult to extrapolate its findings to a wider context. However, we do
believe the construct validity to be appropriate − that the experiment is able to 
show, in principle, relationships between the scale of uncertainty and the type of
design solution that is most appropriate to address the requirement. It should also
be noted that the application domain is a very stable one: it is relatively easy to
draw on previous experience to derive alternative design solutions. This may be
more difficult in a less stable domain, although it may be that more useful alterna-
tive designs can in fact be identified in such environments. There is then a trade-
off between the evaluation of alternatives and the technique’s capacity, ultimately,
to help designers in the derivation of better design solutions.

In terms of the practical application of the ideas presented here, it would be
most appropriate to view the approach as a contribution to process architecture,
perhaps in the context of product-line development or a framework such as BAPO
[27]. Our approach should sit as one of a range of mechanisms that allow the de-
signers to make commitments at appropriate points in the process.

Table 6.11. Outcome of qualitative design prompt sequence study.

Technical Risk Area Uncertainties Design Options Chosen Design Match to Final
Requirements

new feature 2 3 1 estimated good

architecture scope 4 3, 3 2, 2 perfect

comprehensive
requirements

7 3 none n/a

comprehensive
requirements

3 3 2 estimated good

incremental development 1 0 n/a n/a

power interrupt
requirements

1 3 1 estimated good

state transitions 2 4 1 perfect

new feature 2 3 2 good
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6.4 Summary and Research Outlook

We have presented a synthesis of concepts from uncertainty, risk management and
product lines to address the issue of requirements uncertainty that prevents the en-
gineer from making a design commitment. The intended use of the technique is to
rapidly suggest possible risk areas and highlight options for a lower-risk imple-
mentation that includes flexibility to accommodate particular variations from the
requirement as stated. These prompts aim to inspire the engineer into creating a
solution that is engineered for specific potential uncertainties, rather than forcing
either a brittle implementation that cannot respond to change or an over-
engineered solution that is difficult to manage over time.

In our evaluation of the technique, we found that there is significant potential
for this type of analysis to suggest design flexibility that is warranted by subse-
quent changes between early project requirements and final issued project re-
quirements. Several questions still remain unanswered, however. Most impor-
tantly, how much effort is involved in creating the derived requirements and
flexible design versus the time taken to refactor the design at a later stage? It is
this comparison that is most likely to persuade engineers that the technique has
merit. In support of this, we emphasise the positive results that have been ob-
tained so far and focus on the practical aspects of the approach – its lightweight
nature and the ability to apply it only where immediate risks present themselves.
Similarly, in how many cases is flexibility added to the design but never used later
on? The presence of a large amount of unused functionality may be a concern
particularly in the aerospace industry and especially if it prevents the engineer
from obtaining adequate test coverage.

For future work in this area, we have identified four themes. Firstly, we are in-
terested in integration of the concepts of commitment uncertainty into a suitable
metamodelling framework such as decision traces [28] or Archium [29]. Second,
it would be interesting to deploy appropriate tool support based on modern meta-
modelling [30]. Third, there is potential benefit in a richer linguistic framework to
support more detailed uncertainty analysis and feedback to requirements stake-
holders, and lastly, further experimentation is needed to understand the nature of
appropriate design advice, design patterns and commitment-uncertainty metrics.
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