
Page 1/10

Developing an Argument for Def Stan 00-56 from Existing
Qualification Evidence

Zoë Stephenson1, Tim Kelly1, Jean-Louis Camus2

1: High-Integrity Systems Engineering Group, Department of Computer Science,
University of York, Heslington, York YO10 5DD, UK

2: Esterel Technologies S. A., Parc Euclide, 8 rue Blaise Pascal, 78996, Elancourt, France

Abstract: Commonly-used civil guidance and
standards in the safety-critical software industry
(IEC 61508, EN 50128, DO-178B) constrain
development activity and generate process and
product evidence. However, procurements for UK
defence systems must be supported with a safety
case assessed against Def Stan 00-56 Issue 4. This
paper studies the use of evidence from civil
guidance and standards in arguments towards DS
00-56. The approach is centred on a particular
application, the KCG qualified code generator, and is
based on a generic software contribution
argumentation approach. The results show that
issues arise in substantiating failure conditions,
choosing a suitable level of detail in the argument
and relating detailed explanations to the structure of
the evidence. Explicit argumentation was found to
be useful in addressing each of these issues.

Keywords: Certification, hazard analysis, safety
case, argumentation

1. Introduction

Every industry is governed by a body of standards,
and the safety-critical software industry is no
different. Commonly-used standards include IEC
61508 [1], EN 50128 [2] and DO-178B [3]. These
standards recommend particular activities that
contribute towards the safety of a product under
development. Examples of these activities include
hazard analysis, failure modes and effects analysis,
configuration control, traceability and test coverage
analysis. Documentation of these activities and their
results is submitted for independent assessment
against the requirements or objectives of the
standard.

When the product under development is not a
complete system - such as a component, a service
layer, an operating system or a development tool - it
is common to assess the product against the needs
of many different safety standards. The commercial
benefit of this extra effort is the ability to offer the
product to customers in different sectors, and the
standards are similar enough that there is a great
deal of overlap in the evidence produced.

For products that are used in safety-critical systems
procured by the UK Ministry of Defence, assessment

against Def Stan 00-56 [4] is required. This is a
different style of standard to those described above;
instead of recommending activities, it requires that
particular goals are achieved and that the safety of
the product is argued in a separate safety case.

This shift in approach means that it is not
appropriate to simply reuse qualification evidence.
However, matching up the structure of a compelling
and defensible argument with the body of existing
evidence is not straightforward. To help address this
problem, we are customising a generic argument
approach [5] to create guidance for users of the so-
called “Esterel SCADE certification factory”, involving
SCADE Suite tools, in particular the KCG qualified
code generator.

Section 2 describes the operation of the KCG
qualified code generator in more detail, to serve as
background for the discussion. In section 3, we
describe the structure of an assurance case to
support the use of such tools. The experience from
development of this assurance case is expanded in
section 4, identifying the key issues and the
strategies taken to address them, particularly in
terms of the benefits of explicit argumentation.
Related work is briefly studied in section 5 and
conclusions are given in section 6.

2. KCG qualified code generator

The SCADE suite provides graphical and textual
modelling capabilities for control algorithms, with an
emphasis on well-defined, unambiguous behaviours
based on formal semantics. The KCG tool converts a
SCADE model into an equivalent program in the C
language, ready for integration with user-supplied
I/O and scheduling code. To support the assertion
that the resulting object code has the same
behaviour as the SCADE model, there are several
Conditions of Use that the user must follow, for
example:

 The model (and the underlying formal system)
assumes that processing is much quicker than
input/output interaction, and uses a model of
instantaneous computation of outputs from
inputs at each processing step. The C
implementation only satisfies this assumption if
the worst-case execution time of the code is less



than the iteration rate of the model and the
software.

 The generated C code is trusted, but the
compiler must also be trusted to produce a
correct output. Evidence to support this must be
generated by the user for the particular tool-
chain for their target platform. The code
generator generates only a very limited range of
C constructs, so a test suite to test those
constructs is feasible and a ready-made test
suite of this kind is available with the code
generator.

3. Assurance case structure

The overall assurance case is structured into a
number of parts, as shown in Figure 1:

 An argument that shows that the KCG tool itself
was developed in an appropriate way. For
example, this argument includes details of
regular reviews, personnel competence and the
hazard identification process.

 An argument that shows that the KCG tool
correctly transforms input to output - that the
resulting object code has the same behaviour as
that specified in the model. This refers to the
KCG development argument.

 An argument to show that the development of
KCG adequately meets the objectives of DD 00-
56.

 A set of custom argument patterns for users of
the KCG tool. The patterns show how to link the
above three arguments into a software
contribution argument for the user’s own
software system, which in turn should be linked
to the safety case for the system into which the
software is ultimately integrated.

E
p
re
m

3

T
u
a
s
th
s
o
T
a
fu
re
th
a

Goal

Strategy

Goals represent the claims that are made
in the argument. The whole argument
exists to convince the reader of the truth of
its topmost goal.

Strategies show explicitly the approach
taken to link goals to supporting discussion
and evidence. When the argument step is
trivial, the strategy may be omitted.

Solution

Solutions represent basic evidence
artefacts that are used in direct support of
a goal. The link from goal to solution
should be obvious.

Figure 2: main GSN

ase

evelopment
rance Case
KCG DS 00-56 Assurance C

KCG Product
Assurance Case

KCG D
Assu

KCG Assurance Case
Top Level DS 00-56

Argument

Application Safety Case
(Mapping to DS 00-56)

(Patterns)
Page 2/10

ach part of the assurance case has its own
urpose. This structure helps with development and
view of the individual arguments, as well as
anaging the complexity of the argument.

.1 Goal structuring

he argument was developed in a top-down fashion
sing the Goal Structuring Notation (GSN). GSN is

graphical notation for the representation of
tructured argument. The main graphical elements of
e notation are shown in Figure 2. With a GSN

tructure, there is a top-level claim, a goal, the truth
f which the writer wishes to convince the reader.
he supporting elements describe the shape of the
rgument, which is carried in the text labels and in
rther discursive material. The argument eventually
aches assumptions, justifications and solutions
at collectively form the evidence on which the
rgument is based.

Assumption

A

Context

Assumptions give additional constraints on
the argument, to show the basis on which
claims are made.

Context provides further definition to the
argument, explaining key points in more
detail. Contextual elements are important
as they show the reader that a particular
definition or model is in use.

The “is solved by” link shows the main flow
of the argument from topmost goal down to
evidence.

The “in context of” link provides contextual
links to constrain the scope of an element.

symbols

Figure 1: Argument relationships



4. Issues in argu

4.1 Identification of the g

Issue: For an argument
it can be problematic to
that should be made. If
will be too little evidence
too narrow, then it will
needed for the product.

Approach: To address
evidence was studied
which it applies. The ma
KCG qualified code g
concerned with the tran
input source to the equiv
description, the overall
transformation.

To set up an appropria
level software safety a
Interim Standard of Best
Context of Def Stan 00-5
pattern present a series
each within smaller sco
menu from which to s
overall claim. The three
are those that are inten
goal of the software con
shows these public
instantiation for the K
corresponding comment

For the evidence su
appropriate choice was

Pattern ele

Goal: SwSystemSa
{software Y} is acce
to operate within {s

Goal: SwContributi
contribution made b
Y} to {system Z} ha
acceptable

Goal: Hazard: Soft
contribution(s) to {H
acceptably manage
Table 1: Instantiation and discussion of potential top-level goals

ment Instantiation Suitability

fe:
ptably safe

ystem Z}

KCG qualified code generator is
acceptably safe to operate
within development process for
{system Z}

This goal references the
surrounding development process
operated by the KCG tool user.
This claim requires additional
evidence beyond that pertaining to
KCG.

onAcc: The
y {software

zards is

The contribution made by the
KCG qualified code generator
to {system Z} hazards is
acceptable

This goal references the hazards
in the system for which KCG
produces software. Not all of these
hazards will relate to software
behaviour, and very few will relate
to the behaviour of KCG. The
scope is still too large to be
supported by evidence about KCG.
Page 3/10

ment construction

oal

based on existing evidence,
decide on the overall claim

the claim is too broad, there
to support it. If the claim is
not provide the assurance

this issue, the existing
to determine the scope to
in body of evidence for the
enerator is test evidence
sformation from the SCADE
alent C code. Based on this
claim should relate to this

te top-level claim, the high-
rgument pattern from the
Practice for Software in the
6 Issue 4 [4] was used. This
of possible top-level goals,

pes, which were used as a
elect the most appropriate

public goals in the pattern
ded for use as the top-level
tribution argument. Table 1
goals along with their

CG assurance case and
s on suitability.

pporting KCG, the most
that with the most specific

scope. The higher-level goals identified in the pattern
are then the responsibility of the tool user. The
explicit GSN structure brings an additional benefit in
demonstrating to the tool user and to other
stakeholders exactly the type of claim being made
and how this claim relates to its surrounding claims.

4.2 Argument over sources of deviation

Issue: The pattern-based argument is centred on
sources of deviation of the generated C code from
the input SCADE model, but no advice is given with
the pattern on the process of identifying deviations.

Approach: Several existing development documents
contained expert analysis of potential failure
conditions using architectural models and systematic
analysis. To substantiate the claim that the failure
conditions have been correctly identified, a separate
analysis was conducted and the results were
compared to the original findings to confirm that
independent analyses end up with the same results.

To create this view of the possible sources of
deviation, a three-step process was used:

 KCG architectural documentation was consulted
to produce a data-flow architectural model of
KCG. The model was also informed by
discussions with KCG developers, to ensure that
an appropriate level of detail was represented.
The data-flow style is particularly appropriate for
KCG because of its focus on transforming one
representation of behaviour to another.

ware
azard} is
d

Goal: Hazard: Software
contribution to deviation of C
code behaviour from input
SCADE model is acceptably
managed

This goal identifies an argument
that is directly concerned with the
transformation from the input
SCADE model to C code. This
directly matches the scope of the
available evidence.



Page 4/10

 HAZOP analysis was conducted on the
architectural model. The analysis began with
customisation of the general-purpose HAZOP
guidewords to custom forms as shown in
Table 2. Each column shows customised guide
words for different types of flow found in the
data-flow architectural model. The narrow scope
of the analysis and the systematic behaviour of
the tool made it easy to identify mitigating
actions during this analysis step. This step
produced a list of around 70 individual
consequences, with around 20 of those able to
introduce a deviation that would not necessarily
be detected by some existing process.

 While the HAZOP covered individual data flows,
there are specific implementation concerns
relating to the platform differences between the
SCADE semantics and the target execution
platform:

o finite storage

o finite accuracy

o non-zero execution time

o use of pointers

A dedicated gap analysis was conducted in
these areas to identify the platform gaps and
their overall effect. For example, the SCADE
semantics assume instantaneous execution of
the code compared to the iteration rate of the
control loop, whereas the eventual object code
has some non-zero execution time. It is
therefore up to the KCG tool user to determine
the worst-case execution time of the control loop
on the target platform and ensure that this is
compatible with the iteration rate.

The previous analysis of KCG failure conditions was
integrated into these newer analysis results. This
process was performed alongside the other steps to
ensure that all of the different analyses would fit
together. This integration effort prompted the
platform gap analysis and also revealed some
missing domain knowledge that resulted in an
incomplete customisation of the HAZOP guide
words.

Table 2: Customised HAZOP guidewords for KCG architecture analysis

Guide Word Translation Hand-Code Control Feedback Service
No The translation

simply does not
take place.

No user-supplied
code is given.

Nothing
reported about
the behaviour
of the tool.

No service is
available.

Less
More
Part Of Some part of

the SCADE
model isn’t
translated, or
some part of
the C code isn’t
compiled.

Not all of the
necessary user-
supplied code is
given.

The feedback
reports are
missing
feedback about
some part of
the process or
the model.

Only some of
the required
services are
available.

As Well As Something
extra is put into
the C code or
the object code
that was not
intended.

The user supplies
additional code
that is not
necessary.

The feedback
reports give
spurious
additional
information.

Reverse Tool indicates
opposite
success.

Other Than Translation
creates
different
behaviour to
that of the
model.

User supplies
incorrect code.

The wrong
options are
given to the
tool.

The tool
indicates a
different result
to the actual
result
obtained.

The service
operates
incorrectly.



Page 5/10

4.3 Presentation of analysis results

Issue: The HAZOP and gap analyses produced a
large number of possible failure conditions, but there
were many similarities in the conditions and
significant similarities across the suggested
mitigations. In all, the 68 failure conditions gave rise
to 37 individual mitigation actions. Presenting this
explicitly according to the pattern structure would
lead to a significant replication of information across
a complex GSN structure, for which the benefit was
unclear. While the underlying argument would be the
same in each case, it was important to be able to
present the information with a useful amount of
detail.

Approach: This issue was tackled in six steps:

 The failure conditions were classified according
to their ability to cause a deviation of the C code
behaviour from the model behaviour. A brief
analysis of the classification showed that
mitigations for the critical failure conditions
would also mitigate the non-critical failure
conditions. This reduces the number of
mitigations that need to be addressed in the
argument.

 The available mitigations were collated and
grouped into user actions, installer actions and
developer actions. Table 3 gives a summary of
the mitigation areas. This gives a better picture
of the overall scope of mitigations.

 The options for presentation of failure conditions
were enumerated:

o A single reference in the argument to the
full set of failure conditions.

o A reference to each of the 23 critical
failure conditions (those leading to undetected
deviation) plus a combined reference to the
non-critical failure conditions.

o An individual reference to each of the 68
failure conditions.

 The options for presentation of mitigating actions
were enumerated:

o A single reference to the full set of
mitigating actions.

o A reference to actions grouped according
to the 3 responsible agents.

o A reference to actions grouped according
to the 13 mitigation areas.

o An individual reference to each of the 37
mitigating actions.

 The options for argument structure in this area
were sketched out as shown in Table 4. The
table gives a crude account of the overall
complexity of the graphical structure for different
levels of detail in the argument presentation.

 An appropriate combined representation was
chosen. In this case, the argument was
structured with the failure conditions grouped
together into a single entity and the mitigating
actions divided up into the three stakeholder
areas. The division into mitigation areas could
also have been usable at this level of the
argument, although the choice of mitigation
areas came relatively late in the course of the
project.

Table 3: Summary of mitigation areas by responsible agent

User actions Installer actions Developer actions

 Verification of user-
supplied code, type
specification, command
line and customisation

 Validation of correct
tool invocation and
outcome

 Use of the tool on
multiple development
systems

 Verification of post-
generation code
modifications

 Analysis of object code
properties

 Verification of correct tool
and OS version

 Verification of tool
command line and file
processing capabilities

 100% requirements test
coverage

 Full MC/DC

 Absence of unintended
functions

 Verification of command
line and file processing

 Analysis of response to
resource constraints

 Analysis of underlying OS
and library services



Page 6/10

4.4 Link from mitigating actions to evidence

Issue: Having decided to group mitigating actions
according to responsible agent, a suitable structure
was needed to describe the link to the evidence in
terms of goals, strategies and solutions.

Approach: Goals were formulated for the mitigating
actions in terms of subsets of the failure conditions.
The failure conditions that need mitigation by the
user are labelled user-specific failure conditions,
similarly for the installer and the developer.

These actions are carried out in two entirely different
contexts. The developer actions are all carried out
during the development of the KCG tool, while the

installer and user actions are all carried out after the
user receives the tool. This identification of three
types of mitigating condition and two contexts in
which mitigations occur leads to a GSN structure as
shown in Figure 2.

Arguing effective mitigation through developer
actions is achieved by showing that failure conditions
relate to safety requirements, that safety
requirements trace to implemented functionality, and
that the implementation satisfies the requirements.
This links directly into the test evidence produced by
following the guidance of the civil standards.

Arguing effective mitigation through user actions is

Goal: Developer
Developer activities eliminate
developer-specific conditions

Strat: Requirements
Argument over creation

and validation of
requirements

Goal: Development
KCG tool is developed in an

appropriate manner

Goal: Installer
Installer activities mitigate

installation-specific conditions

Strat: UserConditions
Argument over creation of

conditions of use

Goal: User
User activities mitigate user-

specific conditions

Goal: RequirementsCreated
Developer requirements

eliminate developer-specific
conditions

Goal: Requirements
Validated

Developed tool implements
requirements correctly

Goal: UserConditions
Created

Conditions of use mitigate
installer- and user-specific

failure conditions

Figure 2: GSN fragment showing mitigation argument structure

Table 4: Complexity indication for detail in failure conditions and mitigations

Failure Conditions Mitigations

Single
reference to
all mitigations:
1

Division
across
responsible
agents: 3

Division into
mitigation
areas: 13

Individual
mitigations:
37

Single reference to
all failure
conditions: 1

1 3 13 37

Separate critical
failure conditions
with additional
“others”: 24

24 72 312 888

Individual
conditions: 68

68 204 884 2516



Page 7/10

more problematic, as the tool developer has no
control over the tool user. The strongest argument
that may be made here is that the tool developer
identifies conditions that the user must follow so that
the tool output does not deviate from the behaviour
specified by the input. When the tool user comes to
make claims about the system built using that tool,
that user must then demonstrate that these
conditions of use have been met.

To assist the tool user, the customised software
contribution patterns that are available to the KCG
tool user identify exactly where this argument should
be made.

4.5 Traceability supporting completeness

Issue: At several points in the argument, there is a
need to demonstrate completeness. In some cases,
we found that an appeal could reasonably be made
to the traceability relationships in development
artefacts. In other cases, while such evidence could
be used to support an argument, the evidence had
not already been generated as an existing
development artefact. In this situation, the benefit of
the additional evidence must be traded off against
the effort involved in generating the evidence.

Approach: There were three points at which
traceability was a strong candidate for support of
completeness:

 The identification of failure conditions: for this
area, we appeal to the traceability from the
failure conditions to the data-flow architectural
model of the KCG tool, and from the identified
failures to the failures obtained from previous
domain expert analysis. Issues identified from
the traceability structure were fed back into the
analysis process and prompted the use of
explicit platform gap analysis.

 The combination of mitigations covering failure
conditions: here the argument must show that
developer, installer and user mitigation activities
are complete with respect to the failure
conditions that they address. The argument
refers to the traceability from mitigation actions
to the failure conditions that they address, but
does not call for specific analysis of coverage,
as such analysis is trivial with just three types of
mitigation activity. If there were many more
activity types (or perhaps responsible agents)
then an explicit coverage analysis would be
appropriate.

 The combination of guidance areas covering the
intent of a standard: the top of the KCG
development assurance argument is divided into
system development guidance areas on the
basis of a recognition of system development
themes:

o Responsibility assignment: in this area,
the organisation must identify appropriate

roles and skills, identify the personnel in those
roles, and demonstrate that those people have
those skills.

o Safety management: here, the process
must focus on the analysis of failure
conditions and the management of risk.

o Configuration management: strong
configuration management is essential as
backing for a product argument.

o Continuous safety: safety must be
addressed before development begins, during
development, at the point of deployment and
in the context of the use of the tool.

o Traceability: strong traceability is vital for
support of a product argument.

o Coverage: this area embodies the idea
that 100% of the requirements should be
shown to be correctly implemented and no
unintended functionality should be present.

To show that these areas match with the content
of appropriate existing guidance, the argument
refers to three areas in which process guidance
is already given (DO-178B, CAST-13 and IEC
61508). There is currently no explicit
identification of any traceability mapping from
the process areas to the contents of those
guidance documents and standards. This step in
the argument is instead taken to represent best
practice and professional judgement.

4.6 Explicit product and process evidence

Issue: Some of the evidence produced by following
industry guidance will relate to the correctness of the
product with respect to its intended behaviour. Other
evidence will show that the product was developed
competently in accordance with industrial best
practice. It is not common to find the distinction
made explicit in industry guidance, nor in the
evidence so produced, yet the distinction is a basic
feature of an explicit argument.

Approach: The assurance argument is structured as
a product argument that appeals to a process
argument (an argument for development assurance).
Beneath this structure, one group of evidence relates
to the product argument, showing that KCG in itself
has the required integrity, while other evidence
relates to the process argument, showing the
suitability of the development process for a critical
development.

For example, software unit test reports and analysis
of the adequacy of the conditions of use appear in
the KCG product argument, while coverage reports
and configuration management audits appear in the
KCG development process argument.

The assurance gained from the process argument
provides confidence that appropriate methods were
employed in generating the product and the



Page 8/10

evidence that supports the claim that that product
meets its requirements.

4.7 Good practice

Issue: In many parts of the argument, the claim is
essentially that some evidence is adequately
generated. There is no standard approach for linking
such a claim to existing evidence.

Approach: To identify appropriate evidence, the
argument was built with the following four aspects of
good practice in mind:

 Definition of a process that is capable of
generating the required evidence.

 Assessment of the process definition to show
that it is appropriate for the type of evidence
being used. For example, in KCG development
there is independence between implementation
and testing.

 Evidence that the process has been carried out
effectively, such as logs or audits.

 Evidence produced by the process itself, such
as functional test results or coverage data.

In many cases these aspects are distributed around
the argument. For the example of functional test
results, the four aspects arise as follows:

 The testing process definition is given in the test
plans, and these are referenced from the KCG
development argument, under goals concerned
with continual safety consideration throughout
the lifecycle.

 Adequacy of the testing process definition is not
shown directly, but is established by association
with the guidance given in established
standards.

 Evidence that testing has been carried out
effectively is found in the KCG development
process argument, demonstrating 100%
requirements coverage and MC/DC.

 The actual test evidence is used in the argument
structure to substantiate the claim that the safety
requirements for the KCG have been met.

Assessment of evidence according to these four
aspects provided a useful rule of thumb when
identifying the role of particular pieces of available
evidence.

4.8 Support for complex guidance

Issue: When the end user of the KCG tool is
producing software that is governed by DS 00-56,
some additional guidance will be necessary. To
ensure that the guidance is followed, the value of
that guidance - or the potential cost of not following
that guidance - must also be conveyed to the user.

Approach: The argument structure supports this in
two ways:

 The KCG user is given conditions of use that
constrain the installation and use of the tool to
the context within which KCG assurance claims
are valid. This involves areas such as the
operating system used by the tool, command
line options and the setting up of optimised
operations in the generated code. As a stand-
alone list of conditions, some effort could be
involved to track down the rationale for each
condition. In the argument structure, the
conditions of use trace to installer and user
activities that mitigate specific failure conditions,
which in turn links to a higher goal involving
more general identification, elimination and
mitigation of failure conditions. A final step from
this point shows that the conditions in question
are the critical failure conditions from the hazard
analysis and the platform gap analysis. The
analysis report classifies the mitigating actions
and links them to the conditions of use,
completing the picture.

 The KCG user is given guidance on constructing
a software safety case. This is based on
customised software safety argument patterns,
indicating the tiers of development for use of
KCG and the links from KCG-specific tiers to the
KCG product argument and its supporting
material.

4.9 Direct objective mapping

Issue: The audience for a safety case is diverse. For
some readers, the important information will be the
safety argument and the degree to which it
convinces the reader of its claim. For other readers,
the important information will be the satisfaction of
the particulars of DS 00-56. It is difficult to structure
a safety case so that it will satisfy a range of different
stakeholders.

Approach: For the KCG assurance case, a particular
structure was used to link that assurance case into
the tool user software safety case in a way that
allows reference to adherence to a particular
standard. The structure is shown in Figure 3.

The DS 00-56 conformance argument supports an
overall KCG tool dependability claim, which in turn
supports a claim that the output of KCG, when
compiled and executed on the target platform,
accurately implements the SCADE model. This claim
provides backing for the assertion that validation in
the SCADE environment is sufficient evidence for
the correctness of the design tier in the
decomposition.



Page 9/10

5. Related work

Argumentation research for safety cases focuses on
the abstract concepts and general principles of top-
down argument construction. Examples include
argumentation patterns [8], safety case modularity
[9], assurance sufficiency [10] and argument
justification [11]. Nevertheless, arguments are
almost never constructed purely top-down; there is
always some notion of the available evidence and
the support that it may give to an argument. Working
from the evidence to identify appropriate goals may
not seem ideal, but it has the advantage of focusing
on the power of the evidence rather than searching
for ways to support an a priori belief, a danger
highlighted in the Haddon-Cave report [12, p259, pt
5]. In practice, a combination of top-down principles,
patterns and existing evidence will be applied in
creating a safety case.

While there is little existing research directly related
to the use of evidence from one standard in support
of another, several parts of this paper are essentially
practical examples of more general principles:

 The allocation of evidence between process and
product arguments supports the targeted
process argument approach of Habli and Kelly

[6]. They advocate process arguments that are
structured around concerns that are particular to
the project, rather than around the general
process structure imposed by a standard. For
KCG, an intermediate approach was taken in
which the process argument stands separately
but makes specific claims about areas that
attract concern.

 The issue of identifying and obtaining
appropriate traceability information is also found
in other work [7]. The identification of the need
for traceability is similar here, but instead of
relying solely on existing traceability information,
Ridderhof et al propose tool support to allow for
the construction of arbitrary traceability links.
They identify automated traceability
management as a key issue in the success of
such an approach.

6. Summary and conclusions

Given appropriate evidence, construction of an
explicit argument should be straightforward.
However, when the argument is made against one
standard and the evidence is from another, there is
the potential for difficulty in deciding on the argument
structure and the exact evidence to include. In
producing an assurance argument for the KCG

Goal: SSRnSatSD
{software safety requirement}

is demonstrably satisfied
through SCADE validation

Goal: KCGAccurate
SCADE implementation

accurately implements SCADE
model

Strat: KCGUse
Argument over usage of

KCG

Goal: KCG0056
KCG tool is dependable in
accordance with DS 00-56

when Conditions of Use are
followed

Sol: SCADEVal
{SCADE validation

evidence for software
safety requirement}

Goal: Conformance
KCG conforms to DS 00-56

Goal: KCGDependable
KCG tool is dependable when
Conditions of Use are followed

Con: KCGCoU
KCG Conditions of Use

Figure 3: GSN fragment showing argument integration structure



Page 10/10

qualified code generator intended for DS 00-56, we
found that we could use a wide range of evidence
from the development and analysis of the tool under
DO-178B, EN 50128 and IEC 61508.

In terms of evidence generation, our efforts were
centred on additional support for the claim that
sources of deviation were correctly identified. The
remaining argument was supported with evidence
generated through alternative standards.

The overall argument construction effort revolved
around:

 Correctly identifying the relevant topmost goal,
by instantiating a list of suggested topmost goals
and comparing against the available scope of
evidence;

 Presenting the results of hazard analysis in the
argument in a manageable way;

 Providing an appropriate link from high-level
mitigations to evidence;

 Linking to evidence that demonstrates
completeness of analysis;

 Dividing existing evidence into process and
product evidence;

 Where evidence is presented for a claim about
the product, looking for backing evidence to
show good practice in the generation of that
evidence;

 Providing a route for the identification of
rationale behind the guidance given to the tool
user;

 Describing the relationship between the
available evidence, the supporting arguments
and the individual requirements of DS 00-56.

While many parts of this work represent
instantiations of general principles, we believe there
is novelty and value in our approach to finding an
appropriate presentation mechanism for a large body
of evidence and in the method of scope comparison
to document the selection of an appropriate top-level
goal.

7. References

[1] IEC: “Functional safety of electrical/ electronic/
programmable electronic safety-related systems”,
IEC 61508, 2000

[2] CENELEC: “Railway applications.
Communications, signalling and processing
systems. Software for railway control and protection
systems”, EN 50128, 2001

[3] RTCA/EUROCAE: “Software Considerations in
Airborne Systems and Equipment Certification”,
DO-178B, 1992

[4] Ministry of Defence: “Safety Management
Requirements for Defence Systems”, Def Stan 00-
56, Issue 4, 2007

[5] Menon, C; Hawkins, R. and McDermid, J.: “Interim
Standard of Best Practice on Software in the
Context of DS 00-56 Issue 4”, SSEI report SSEI-
BP-000001, 2009

[6] Habli, I. and Kelly, T: “Achieving Integrated Process
and Product Safety Arguments”, The Safety of
Systems, Part 2, Proceedings of the Fifteenth
Safety-critical Systems Symposium, Springer
Verlag 2007, pages 55-68

[7] Ridderhof, W.; Gross, H.-G. and Doerr, H:
“Establishing Evidence for Safety Cases in
Automotive Systems – A Case Study”, Proceedings
of SAFECOMP 2007, LNCS 4680, 2007, pp 1-13

[8] Kelly, T. P. and McDermid, J. A.: “Safety Case
Construction and Reuse Using Patterns”,
Proceedings of SAFECOMP 16, Springer
Workshops in Computing, 1997, pp55-69

[9] Althammer, E.; Schoitsch, E.; Eriksson, H. and
Vinter, J.: “The DECOS Concept of Generic Safety
Cases - A Step Towards Modular Certification”,
EUROMICRO-SEAA, 2009, pp537-545

[10] Hawkins, R. D. and Kelly, T. P. “Software Safety
Assurance - What is Sufficient?”, IET System
Safety Conference, 2009

[11] Bishop, P. G.; Bloomfield, R. and Guerra, S. “The
Future of Goal-Based Assurance Cases”,
Proceedings of the Workshop on Assurance Cases,
2004

[12] Haddon-Cave QC, C.: “An Independent Review into
the Broader Issues Surrounding the Loss of the
RAF Nimrod MR2 Aircraft XV230 in Afghanistan in
2006”, 2009

8. Glossary

GSN: Goal Structuring Notation

HAZOP: Hazard and Operability Study

KCG: Esterel Qualified Code Generator

PDF: Portable Document Format


