
Automated Component Configuration in Safety-Critical
Domains

Zoë Stephenson1 and John McDermid1

Department of Computer Science, University of York
Heslington, York YO10 5DD, UK

{zoe.stephenson,john.mcdermid}@cs.york.ac.uk

Abstract. Embedded systems development has enjoyed the success of product
family technology for a number of years. However, the same success has not been
present in the world of safety-critical embedded systems. These systems are de-
veloped using processes that fall under a great deal of scrutiny and justification,
and automated tools to manage product family configurations will not be easy
to accept in this type of process unless they exhibit some specific characteristics
such as user control over processing and explicit traceability of processing steps.
We propose an implementation framework for tools that are more amenable to
this type of development process, and illustrate this framework with an appli-
cation that configures fault-accommodation components for engine control soft-
ware.

1 Introduction

Product-line technology has enjoyed a wave of successes [3] in a number of different
contexts. It has been particularly successful when applied to small embedded system
product lines — those situations in which a product line of embedding systems contain
software that performs some of the functionality. There are a number of reasons for
their success in these domains:

– The software requirements are based on the need to control a physical device or a
protocol, rather than to respond to the needs of a human user. Device and protocol
behaviours are traditionally easier to specify precisely than human behaviours.

– The number of variants of behaviour required of embedded software is generally
limited by the range of variants in the embedding system.

– The required behaviour depends on very few different domains, and is overseen by
relatively few stakeholders.

One particular class of embedded systems, however, has not enjoyed as much suc-
cess with product-line technology — that of highly-integrated safety-critical systems.
By ‘highly-integrated’, we mean that the parts of the physical system (in this case, an
aircraft engine) work in unison to perform their function. These systems have some
characteristics that differ from other embedded system applications:

– There is still a physical system that must be controlled, but the specification of
device behaviour must include information about the way it can fail; the effects of

those failures must be accounted for in the runtime operation of the system. This
makes for more complex specifications.

– The number of variants is still very limited, but the dependencies that limit the range
of choices are mostly based on the causal dependencies in the integrated embedding
system, rather than in the dependencies of the functional behaviours. This increases
the complexity of requirements derivation and product selection.

– The required behaviour is dependent on a larger number of domains, and the safety
assessment procedures require a high degree of oversight from certification au-
thorities. The structure of development deliverables, in particular, is mandated in
certification standards. This places an additional constraint on product-line man-
agement technology, that it produces information for all of the intermediate de-
liverables required by the certification authorities, including traceability between
those deliverables.

A large part of the responsibility of a safety-critical control system is to accommo-
date possible failures in the embedding system. This includes the various sensors and
actuators, and for an aero-engine also includes subsystems such as the ignition system
and the fuel pump. The strategies for dealing with failures in this system range from
synthesising control parameters from redundant measurements, through less accurate
reversionary control modes, to simply controlling the engine to a preset idle thrust.

The program logic that controls fault accommodation accounts for around 70% -
80% of the code for a modern aero-engine application. This includes code to detect the
presence of faults as well as the fault accommodation behaviour. The requirements for
this accommodation logic are derived from the safety assessment procedures, and are
typically expressed in a highly formalised manner. Once the requirements are specified,
the process of deriving an implementation is largely systematic.

A systematic transformation process that covers a large part of an application is a
good candidate for automated translation. There is a large amount of effort involved
in performing the transformation manually, and it is potentially applicable to a large
proportion of the code, so the return on investment is likely to be high. Applying the
technology to a product line of safety-critical systems brings an added benefit: any
specific strategies that are developed so that the tool is more applicable to the domain
are likely to be reusable across different products.

Tool development for safety-critical systems carries with it some additional con-
cerns. For the aero-engine applications studied in this paper, those concerns are embod-
ied in the DO178B standard[14]. In general, if a tool is to be completely trusted in oper-
ation, then its development must be controlled to the same standards as the development
process for the product that it generates. For a general-purpose tool, this can become
rather costly. An alternative strategy is to require that the tool’s output is checked for
correctness by a separate process. This additional process can be a separately-developed
verification tool (for which less stringent criteria apply), a human review process, or a
mixture of the two. However, this approach requires that the tool provide enough infor-
mation about its operation to allow this review to take place.

This paper describes the design and implementation of a fault-accommodation gen-
eration tool for safety-critical aero-engine applications, using this alternative strategy
of external verification. To ensure that the tools so developed report accurately on their

activity, a general-purpose framework for externally-verified safety-critical transfor-
mation tools was generated. This framework supports the implementation of tools for
product-line component generation and configuration under flexible user control.

2 Related Work

This type of transformational generation is typical of traditional compiler pipeline archi-
tectures. They parse input files into an internal representation and perform transforma-
tions on the internal representation to produce object code. For safety-critical software
development, there is often a compromise between the transformational ability of the
compiler and the need to verify that the object code correctly implements the source
code. In the safety-critical domain, organisations are typically very conservative with
preprocessors and compiler optimisations.

An application generator system raises the level of abstraction from that of source
code, and allows the designer to work at a level that is closer to the domain in which the
application is used. Early application generator systems grew out of a formal treatment
of languages and transformational systems [2, 1]. Here, automation was seen as a way of
guaranteeing that correct transformations were being applied to the product description.

A powerful and general system of transformations is found in the domain-specific
application generator system Draco [12]. In this system, the transformation process is
characterised as passing through a number of disparate but connected domains. Experts
in one or more of these domains create transformation rules that manipulate the infor-
mation within a domain, or translate information from one domain to another. The user
of the system then directs the transformation process from one domain to another until
an implementation domain is reached, from which the application may be compiled and
executed.

Many of these generator systems have been used to create programs in narrow and
well-understood domains of expertise. For example, the report describing Draco [12]
uses the transformation of mathematical algorithms to illustrate the generator approach.
The idea of focusing on a narrow domain of application can be seen in many domains
where reuse has been successful [8], and in particular in modern product family research
[5]. The typical example of a floating weather station product family [17] is a relatively
small domain with user-focused variation. The use of larger and larger domains and
more technological variation has only emerged in recent years as larger organisations
take on product families [4].

An application generator system provides a type of reuse known as generative reuse.
The generator and its input language encapsulate the knowledge that is being reused,
and together they create artefacts that form part of the product. Some alternative strate-
gies use component reuse — the artefacts that make up the product are already present
in some kind of library repository[13], and they are extracted and integrated into the
product according to its configuration, or the appropriate libraries are included with the
product when it is distributed or executed.

The domain of engine control, the focus of this paper, is driven by system issues
such as weight, emissions, safety and response times. It involves expertise in mechan-
ical engineering, safety assessment, control engineering, aerodynamics and a whole

range of associated areas. However, we believe that some subdomains, such as the ac-
commodation behaviour, are sufficiently well-structured and formalised to warrant the
use of some combination of generative and component-based reuse as a way of manag-
ing variability. An interesting characteristic of this scenario is that in the fault accommo-
dation behaviour subdomain, it is the safety analysis process that provides the selection
criteria for fault-accommodation products, rather than a customer-focused requirements
analysis process.

3 Approach

The domain that has been chosen for the work presented in this paper is that of fault ac-
commodation, with a safety analysis model providing selection criteria. There are some
established techniques by which a safety model can be constructed [9]; these techniques
describe the behaviour of the system in its normal mode of operation, the events that can
cause abnormal operation, and the ability of the system to continue behaving correctly
in the presence of those events. To continue correctly, some accommodation measures
may need to be taken, and these are represented in the model so that they may be taken
into account when assessing the safety of the system. In a typical engine control system,
these measures are:

– For an intermittent or transient fault, the last good value can be latched to hide the
problem until it is corrected

– If a value from a sensor is incorrect or unavailable, then a value from an alternative
sensor may be used. Some sensors on the engines measure the same physical value
as sensors on the aircraft, such as external pressure. For other values, there may
be redundant sensors wired so that they reach the control computer by a different
route. The engine control system can select among the values from these different
sources to accommodate faults.

– If a sensor value is deemed to be incorrect, then it may be possible to calculate an
approximation of that value from other sensor values. This will potentially lead to
a small loss of accuracy in the control algorithms, but the effects of this loss of ac-
curacy will have been analysed and accommodated in the design of the algorithms.

– If enough sensor inputs are unavailable, or if there is a problem with some actuators,
then a different control algorithm may need to be selected. The system is still under
control, but there may be a different control parameter in use (e.g. controlling based
on a speed rather than a pressure) or the engine controller may only be able to
control the engine to idle at a safe speed.

We seek to create an automated transformation tool for the generation of derived
requirements and implementations from such specifications of required fault accom-
modation behaviour. The environment and process guidance within which the tool will
operate imposes a number of tool implementation requirements. Some of these are to do
with the reporting of the tool’s actions, and others are to do with the ability to configure
the tool to use particular strategies for particular inputs. Key requirements are:

1. The tool shall be made of data processing activities that incrementally convert input
data to output data.

2. The selection of data processing activities, where more than one is applicable, shall
be under the control of the tool user.

3. Each data processing activity shall be independently testable.
4. Each data processing activity shall report on the context in which it was invoked,

the output that it produced, and the alternative rules that the user could have selected
among.

5. Each invocation of the tool shall be tagged with a unique identifier and configura-
tion management information (user, date, time, revision etc.) as appropriate to the
project’s configuration management criteria.

Together, these requirements ensure that the use of the tool will be as transparent as
possible. This helps to ensure that automated or manual review processes have access to
as much information as possible about the tool operation, and that when problems arise
(such as accommodation measures that are intrinsic to the control loops, which cannot
be automated in this way) there is the possibility of selectively overriding the default
tool operation to correct the problem. The division of tool processing into incremental
processing activities means that if there is currently no strategy in place to handle a
particular problem, one can easily be added.

These requirements are realised in an application framework. The architecture of
the framework is depicted in Figure 1. The framework allows for the specification of
a number of transformational processes. Processes are connected to data repositories,
and do not directly communicate with one another. The program’s input comes from
input-facing processes that take external information and build internal representations;
conversely, output-facing processes take internal representations of transformed infor-
mation and provide output to external information.

Each individual transformation process is described as a tuple containing the source,
sink and name of the process. Separately to this is a user-control manager system. This
records matching expressions that specify a process and input names and values, and
allows the user to divert the execution into a different process. This constrains the range
of data types that can be stored in the intermediate data areas, as the user control input
language must be able to specify matching expressions (e.g. “value > 4”, or “name !=
‘CriticalSection’ ”). However, the loss of expressiveness here is offset by the gain in
control over tool behaviour, which is crucial for the type of development process for
which this tool framework is intended.

After each processing element performs its transformation, that transformation is
recorded in a database of traceability information. The record contains the name of the
original process that was selected, the rule that was actually executed, all of the input
values supplied and all of the output values produced. This provides a complete log
of the tool activity throughout the transformation process. Information of this kind is
needed so that it can be shown that the tool has either correctly selected the appropriate
transformation or has correctly obeyed the user control information. The same data can
also be used for requirements traceability databases and rich traceability arguments.

The fault-accommodation generation tool is implemented as two separate applica-
tions of this framework, one to derive human-readable requirements from the safety
analysis information and another to generate the component configuration required to
meet those requirements. They are divided so that the user can review the derived re-

Master Control

User Control
Diversion

Processing RequestConfiguration

Output Only
Process

Transformation
ProcessTransformation

ProcessTransformation
Process

Input Only
ProcessOutput-Facing

Process
Input-Facing

Process

Processing Request

Traceability Report
Process Diversion

Lookup Tables

Internal Data Store

**
*

Processing Input Processing Output

KEY

Data

Activity

data flow

Sub-Data

Sub-Activity

Fig. 1. Tool Framework Architecture

quirements before the implementation is configured. This stage may result in changes
to the user control information used in generating the derived requirements, iterating
until an acceptable set of requirements is reached. The user may also add new require-
ments from outside the derivation tool, and mask out requirements for which automated
configuration is not desirable. The application framework organises transformations as
a number of small processes chained together, and manages the data interactions out-
side of those processes. Even though the framework allows transformations to occur as
soon as there is data available, the application uses a strict pipeline approach to preserve
determinism and improve the readability of processing traceability output. This makes
it very straightforward to divide a transformations into a number of discrete stages so
that the user may intervene and review progress between stages. This first derivation
stage is an example of generative reuse based on the safety analysis information.

Input-Facing
Process

Lookup Tables

Extract
Accommodation
Requirements

Assign to
Architecture

Assign Template and
Section for Derived

Requirements

Transformation
Process

Output-Facing
Process

Processing Input

Safety Analysis Model

Auxiliary Definitions

Internal Data Store

Basic Requirements Assigned Requirements

Processing Output

Derived Requirements

Extraction Patterns Architecture
Allocation

Section Allocation Template Allocation

Fig. 2. Requirements Allocation Tool

Requirements derivation and allocation is shown in Figure 2. This stage of the tool
is concerned with extracting the required fault accommodation from the output of the
safety analysis process. Extraction is performed by pattern-matching the different parts
of the safety model against a set of patterns representing those parts of the model that
require accommodation. The process combines these requirements with auxiliary in-
formation that specifies how to perform accommodation in more detail, such as cross-
check tolerances and mode signals, that is not present in the abstract safety model. The
tool accounts for the operation by attaching a set of modes to each requirement. If any
modes are attached, then the requirement is only valid in those modes. The requirements
are allocated to specific elements of the product-line software architecture and mapped
to the project’s documentation structure through pattern-matching tables. The resulting
requirements are output in both machine-readable and human-readable forms using a
set of customisable templates. The user is able to control the allocation of templates to

requirements at this stage. This allows for specific types of formatting or phrasing, such
as the use of truth-tables or structured language requirements.

This stage of the tool is an example of generative reuse based on the safety analysis
information.

Input-Facing
Process

Lookup Tables

Merge Related
Requirements

Configure
Components

Build Glue

Transformation
Process

Output-Facing
Process

Processing Input

Derived Requirements

Component
Repository

Internal Data Store

Merged Requirements Skeleton Components

Processing Output

Product Components

Merge Rules Configuration Rules Glue Rules

Fig. 3. Implementation Configuration Tool

The implementation configuration stage is shown in Figure 3. This tool is concerned
with the organisation and interconnection of existing library components that have been
produced for use within a product-line architecture. The accommodation processing re-
quirements from the first stage of the tool specify bindings for their inputs and outputs.
The configuration tool links the individual processing specifications together according
to their bindings, to form complete processing transactions. The bindings are only con-
sidered at this stage if both of the components involved are allocated to the same archi-
tectural unit. The transaction grouping process provides all of the information needed to
configure a set of components for the accommodation transactions. The components are
created according to their architectural units in a combination of the following ways:

1. Certain patterns of required accommodation behaviour are mapped to existing product-
line components by pattern-matching against a table of existing patterns and the
corresponding components. For example, a range check and a cross check in series
might map to a particular configuration of a combined range and cross checking
component.

2. Certain patterns of required accommodation behaviour are created by instantiating
simple operators into component wrappers. For example, an existing accommoda-
tion component can be made mode-specific by wrapping it with a switch that only
routes processing through that component when the system is in an appropriate
mode.

This pattern-matching process is driven by another configurable table that maps
between patterns of requirements and the names of the corresponding transformation
to use. That name is then checked against the global user control database to allow the
user to override the rule that has been selected.

The process results in a group of configured components for each architectural unit
within the product-line software architecture. Within each group of components, some
of the requirements may have been merged to correspond with the set of reusable com-
ponents provided within the product line. This merging is reported through the require-
ments traceability information, so that it may be dealt with appropriately when con-
structing traceability links or traceability matrixes.

This stage of the tool is mainly component-based reuse, with a trivial amount of
generation added to glue components together and impose mode-specific behaviour.

4 Evaluation

Evaluation is an important process for any tool. For a tool that is intended to produce
safety-critical implementations, the evaluation and assessment process is critical to the
use of the tool. The evaluation described here is our first step in assuring that the tool is
able to correctly transform safety analysis information into the appropriate accommo-
dation components.

To provide this assurance, the tool is exercised on safety analysis information from
an existing project, generating derived requirements in a form that is appropriate to
the project. This includes the particular requirements documentation structure and the
templating of individual requirements. The derived requirements must make reference
to the units of the existing product family architecture. When the implementation is
generated, the components that are configured must be of a comparable granularity and
responsibility to those used in the original product.

The evaluation compares the results of automated generation of fault accommo-
dation implementations with the results obtained in the original project by software
engineers constructing the design manually. The features that are of interest during the
comparison are:

– Fault accommodation functionality that was specified in the manually derived re-
quirements but was not produced through automated generation.

– Fault accommodation functionality produced through automated generation that
was not specified in the manually derived requirements.

– Functionality that is structured differently when specified through automated gen-
eration than the manually created functionality.

– Implementation features in the manually-derived fault-accommodation system that
are not present in the automatically generated system.

– Implementation features in the automatically generated fault-accommodation sys-
tem that are not present in the manually-derived system.

An issue with this evaluation is the level of user control used during evaluation.
For some of the features that are generated automatically, there will be a number of
different ways of expressing the accommodation requirement and of configuring the

implementation. If the automated tool were being used by the author of the original
derived requirements and the author of the original software, then they would use the
user control facilities to ensure that certain choices were made, and those choices would
cause the requirements and implementation to be expressed in a way that they find
appropriate. The evaluation should take into account at least the behaviour of the tool
without user control and with user control that models the decisions that were made
when the original derived requirements were produced.

The potential need to alter the tool behaviour does have an advantage, however. If a
reason can be attributed to the user control specifications, this would help in validating
the rationale behind the decisions that were made in the original project.

5 Conclusions and Further Work

As of the time of writing, the tool framework has been created and the tool has been
exercised on some small example specifications to validate the ability to control selec-
tion between different transformation processes. However, a full implementation of the
requirements allocation tool is still under way. The tool is currently targeted at a safety
analysis modelling notation that is unique to Rolls-Royce and is manipulated using cus-
tom tools; some additional effort is being put into the tool development to ensure that
the interpretation of the safety modelling information can be retargeted to commercial
safety analysis toolsets such as the Item toolkit[15] or FaultTree+ [7].

Product-line techniques as a whole are well-known for reducing defects and im-
proving software quality when they are used effectively. However, for an organisation
that is in the process of moving to a product-line technique, the investment in assets
and cultural change is a huge risk, especially when the operation of the business is con-
strained by the certification standards for their domain of operation. A configuration
management tool such as that described here represents a lower-risk approach that can
help the organisation to migrate incrementally to a product-line approach.

The work presented in this paper outlines an automation approach to the configura-
tion of assets, but does not describe any additional support for the construction of those
assets. One interesting avenue of further work would be to determine any impact that the
structure of those assets and their architecture has on the ability of the designer to un-
derstand and manage the resulting configuration. This focus on automating the routine
steps of product configuration in this small domain helps to ensure that variation in this
domain is managed at a higher level of abstraction and at an earlier point in the lifecy-
cle. More effort can be spent on defining and validating safe product configurations that
respond to changing requirements and physical system descriptions throughout product
development. This will mean that variability mechanisms are introduced at the level of
the integrated system, rather than just at the level of software; there is some work that
has been performed in this area to apply ideas of product family variation to this domain
[11, 10, 6, 16].

One advantage of automated transformation that was touched on earlier in this paper
was the potential for automated traceability between safety models, requirements and
implementations. If the tool is being customised in a particular way for a particular
product, then rationale can be added to that customisation to describe the reason for a

transformation step to be carried out in a certain way. All of this information can be
used to improve and validate traceability links between design artefacts.

References

[1] R. Balzer. A 15 Year Perspective on Automatic Programming. IEEE Transactions on
Software Engineering, SE-11(11):1257–1268, November 1985.

[2] R. Balzer, T. E. Cheatham, and C. Green. Software Technology in the 1990s: Using a New
Paradigm. Computer, 16(11):39–45, November 1983.

[3] J. Bosch. Product-line Architectures in Industry: A Case Study. In Proceedings of the 21st
International Conference on Software Engineering, pages 544–554, May 1999.

[4] J. Bosch. Design and Use of Software Architectures. Addison-Wesley, 2000.
[5] J. Coplien, D. Hoffman, and D. Weiss. Commonality and Variability in Software Engineer-

ing. IEEE Software, 15(6):37–45, November 1998.
[6] J. Dehlinger and R. R. Lutz. Software Fault Tree Analysis for Product Lines. In IEEE

International Symposium on High Assurance Systems Engineering, 2004.
[7] Isograph. Isograph Reliability and Safety Software Products. http://www.isograph-

software.com/.
[8] C. W. Krueger. Software Reuse. ACM Computing Surveys, 24(2):131–183, June 1992.
[9] N. G. Leveson. Safeware: System Safety and Computers. Addisson-Wesley, 1995.

[10] D. Lu and R. R. Lutz. Fault Contribution Trees for Product Families. In International
Symposium on Software Reliability Engineering, pages 231–242, November 2002.

[11] R. R. Lutz. Toward Safe Reuse of Product Family Specifications. In Proceedings of the
Fifth Symposium on Software Reusability, pages 17–26, May 1999.

[12] J. M. Neighbors. The Draco Approach to Constructing Software from Reusable Compo-
nents. IEEE Transactions on Software Engineering, 10(5):564–574, September 1984.

[13] R. Prieto-Dı́az. Domain Analysis: An Introduction. ACM SIGSOFT Software Engineering
Notes, 15(2):47–54, April 1990.

[14] RTCA. Software Considerations in Airborne Systems and Equipment Certification. Tech-
nical Report 178B, Requirements and Technical Concepts for Aviation, 1992.

[15] Item Software. Item Toolkit. http://www.itemsoft.com/.
[16] Z. R. Stephenson, S. de Souza, and J. A McDermid. Product Line Analysis and the System

Safety Process. In Proceedings of the 22nd International System Safety Conference, August
2004.

[17] D. M. Weiss and C. T. R. Lai. Software Product-Line Engineering: A Family-Based Devel-
opment Process. Addison-Wesley, 1999.

