
HEALTH MODELLING FOR AGILITY IN SAFETY-
CRITICAL SYSTEMS DEVELOPMENT

Z. R. Stephenson*, J. A. McDermid*, A. G. Ward†

*High-Integrity Systems Engineering Group, Department of Computer Science, University of York,
Heslington, York YO10 5DD UK; zoe.stephenson@cs.york.ac.uk; Fax: +44 1904 432749

†Rolls-Royce plc., P.O. Box 31, Derby DE24 8BJ UK

Keywords: Agility, modelling, reuse, automation

Abstract

In the domain of software development, agile techniques are
increasingly being used to improve the development process.
Agile software development relies in part on rapid feedback
of working software products to validate user requirements.
There has been some effort to introduce agility in security-
critical systems, using an explicit representation of security
concerns known as an iterative security architecture. We
propose a similar explicit representation of safety concerns in
order to introduce agility into the safety-critical development
process: the agile health model.

1 Introduction

Agile techniques have increasingly been seen as an important
way for small, non-safety-critical software projects to deliver
a working product to the customer while accommodating
changes from rapidly advancing technology and volatile
requirements. While aspects of agility have been present in
many engineering disciplines for decades, it has only recently
been the focus of explicit attention in the software community
[8]. Agility is typically described using four comparative
values [3], where “x over y”, means that greater value is
placed on x than y. This is not to say that y is not valued, but
to state where weight or emphasis is placed:

• Individuals and interactions over processes and tool;
• Working software over comprehensive documentation;
• Customer collaboration over contract negotiation, and
• Responding to change over following a plan.

Agility has generally been shown to work under “suitable
circumstances”, summarised [8, page 40] as “non-safety-
critical projects with volatile requirements, built by relatively
small and skilled collocated teams”. Research is continuing
to find ways of embedding agility and agile practices into
what are viewed as “unsuitable circumstances”. In particular,
recent work in the security domain has highlighted ways of
developing security-critical systems using agile processes.
We intend to learn from the security domain and apply a
similar technique to allow for agility in the safety-critical
domain.

2 Agility and security

The security domain is concerned with the protection of
systems from malicious damage. The key concerns of the
domain are captured in the Systems Security Engineering
Capability Maturity Model [6]:

• Identify the organisational security risks.
• Define the security needs to counter identified risks.
• Transform the security needs into activities.
• Establish confidence and trustworthiness in correctness

and effectiveness in a system.
• Determine that operational impacts due to residual

security vulnerabilities in a system or its operation are
tolerable (acceptable risks).

• Integrate the efforts of all engineering disciplines and
specialties into a combined understanding of the
trustworthiness of a system.

Several authors have examined the relationship between
security and agility. Wäyrynen et al [7] assess eXtreme
Programming from a security standpoint, taking key areas of
the capability maturity model and examining their
applicability to XP. They conclude that XP would need
explicit representations of security requirements, proactive
assessment of security risks, building of an assurance
argument and verification through testing. This type of
analysis is performed in the other direction by Beznosov [1],
taking each XP practice and applying that to security
engineering. In this work, the lack of support for incremental
analysis and testing is highlighted as a key barrier to eXtreme
security engineering.

To help resolve some of these issues, Chivers et al [2]
recommend the use of an iterative security architecture that
“remains true to agile principles by including only the
essential features needed for the current system iteration”.
This provides the basis for the ongoing review of the system
from a security perspective. It should be emphasised that an
iterative security architecture represents the security
viewpoint of the current iteration of the system as it is
developed. It should not try to anticipate future needs, nor
should it be used as a substitute for the overall security
argument.

3 Agility and safety

The safety process is concerned with the explicit
understanding of the failure behaviour of a system that is
being designed. The conventional approach to safety is to
take a snapshot of the design at a particular stage of
development, produce a failure model that reflects the safety
engineer’s understanding of the design, and uses the failure
model to inform subsequent design steps – typically with
derived requirements. Paige et al [4] show how Beznosov’s
analysis technique applies to safety-critical systems. Their
findings are of a similar nature – in the following “HIXP”
means “High-Integrity eXtreme Programming”, a proposed
agile development process:
• What is a useful definition of increment in HIXP? This

definition must satisfy the requirement of providing
useful, rapid feedback to the multitude of customers in
High Integrity System (HIS) engineering, as well as
leading to a system that is eventually certifiable.

• What is a useful testing infrastructure that permits the
different kinds of testing and simulation that occur in
HIS, while still enabling rapid feedback? At which
increments during HIXP can and should this
infrastructure be used?

• What guidance and training must be provided to HIXP
coaches in order to facilitate customer feedback and deal
with the range of customers inherent in HIS engineering?

• Can the pair programming/modelling practice be used to
enable independent assessment within pairs, for the
purposes of leading to certification? This will require
negotiation and discussion with the certification
authorities, e.g., the Civil Aviation Authority.

• How will the extensions/additional (safety) practices be
integrated with the typical [agile] approach?

In the previous section, a technique was outlined through
which an iterative security architecture allows security to be
considered as a part of a design that evolves through an agile
process. In practice, a designer will include security features
even without such an architecture, based on domain
knowledge. This effect is also seen in safety-critical design,
where a design will usually include features such as input
redundancy, cross-checks, multiple lanes of control and
watchdogs.

During safety analysis, the safety engineer produces a number
of explicit safety models to confirm the intended behaviour of
the system and systematically derive fault trees, Markov
models and other safety models that demonstrate the
relationship between events in the system and its safety.
Some modelling techniques such as Cecilia/OCAS [9] and
HiP-HOPS [5] represent the modular structure of the system.
However, modular structure with safety information is not
necessarily adequate for use as an agile safety model:

• Agility is based on communication. To adequately

communicate safety concerns, there must be some shared
understanding of the assumptions underlying the domain.
This information can be made explicit in the agile safety

model, improving communication so that the discussion
is able to focus directly on the problem rather than
continually reaffirming context.

• Similarly, it would be appropriate to capture design
rationale from multiple points of view in an agile safety
model. For example, there may be specific fault-
accommodation schemes that have been selected because
of the characteristics of the inputs being accommodated
and the functions that use those inputs, and the safety
engineer may view the reasoning behind the choice of
scheme differently to the system engineer.

• Agility expects that development will be incremental;
that is, that small changes have a localised effect and that
functions can be considered in relative isolation. In
safety-critical systems, the degree of integration and
dependency means that this expectation will rarely be
met. To identify when a change is incremental and when
it has a wider effect, it must be possible to automatically
trace the effect of changes in aspects such as fault
accommodation, modes, maintenance procedures and
shared computing resources.

• Safety analysis generally works on a representation of a
complete system. Agility generally works on a
representation of one area of functionality at a time,
gradually improving the functionality so that it tends
towards a complete design. To manage this difference,
the agile safety model must allow the practitioners to
include assumed details into the model to fill in the
“blanks” in the design. These assumptions must be
included in the automatic traceability so that later
implementation in those areas can be assessed to show
how it meets the existing assumptions.

To adequately support an agile process, an agile safety model
must represent a “good enough” view of the engineers’
assumptions about the behaviour of the model being
constructed, it must be easy to maintain this model during
development, and it must be possible to extract failure
information from that model so that safety issues in the
evolving design can be addressed as soon as they arise.
Maintenance and extraction are a matter of providing
adequate tool support and process infrastructure; in this paper
we focus on the model content and its use within an agile
safety-critical development process.

4 Model development

To develop the agile safety model, a number of sources were
consulted:

• The original agile security architecture definition;
• Component-based safety modelling techniques such as

Cecilia/OCAS [9] and HiP-HOPS [5];
• Recommended practice documentation ARP 4754 [10]

and ARP 4761 [11];
• Expertise within the safety analysis community.

These sources help to define the model of information needed
for all the parties involved in the development process to

Configuration Procedures

Software build flexibility

Development variables

Field-loadable software

Data-entry plug

Maintenance Procedures

Dispatch Logic

Dispatch categories

Fault Accommodation Scheme

Limits and tolerances

Rates of change

Modelled checks

Fault masking

Logging

Annunciation

Modes

Computer mode

Flight mode

Mode transitions

Reversion

Dispatch

Maintenance

Hazards

Shared Resources

Processor / OS

Cables, buses, pipes

Protection Mechanisms

Redundancy

Isolation

Voting

Watchdogs

Failure Propagations

FMEA Data

Standards & Requirements

Impact of External Events

Component / Function Structure

Lane Health Levels

extend

extend

mitigate

satisfy

extend

extendextend

extend

extend

extend

satisfy

depend on

depend on
satisfy

understand the safety characteristics of the system. In this
paper we call this model an “agile health model”, although
the term “agile dependability model” would also be
appropriate in domains where “health model” already has a
specific meaning. The overall approach to generating the
agile health model can be summarised in 4 stages:

1. List processes creating and using information relating to

safety behaviour. This includes safety analysis processes
such as Preliminary System Safety Assessment (PSSA)
and specific failure modelling techniques such as fault
tree analysis; it also covers systems and software
engineering processes such as architecture definition and
validation. At this stage, it is relatively simple to validate
that the list is complete.

2. List the information produced and used by those
processes. For example, the safety analysis processes
need information about events impacting on the system
from outside (such as fuel line blockages) and the
expected rates of occurrence. Some information is fed
directly between processes, while other information is an
external input or output of the development process.

3. Group information into categories. The categories come
from the terminology of individual safety processes,
safety-critical systems development and safety standards.

4. Layer related information together. For example, shared
resources, failure propagation and protection mechanisms

are all aspects of the system design. This produces the
final model, shown in Figure 1.

Figure 1 – Agile Health Model

The model has been organised so that elements higher up in
the diagram are those that are produced earlier in the overall
development process. Standards, requirements and the
system architecture form the basis of the model. Following
on from those, hazards are associated with functions, and
FMEA data with components; these underpin the safety
analysis processes. Design aspects come in the next layer; in
particular the shared resources description is used during
common-cause analysis. The next layer considers functional
aspects, and makes explicit information such as fault
accommodation schemes. The final categories are process-
based, defining the maintenance and configuration of the
system.

While there is a related discipline of agile modelling [12], the
agile health model presented in this paper represents a
different use of modelling. In agile modelling, agile methods
are used to construct a development model from which the
system implementation is produced. An agile health model is
a companion model; it reflects the safety-related information
and assumptions that are not necessarily captured in the
development model. The agile health model could model
system designs that are produced using agile modelling, as
well as software implementations produced using an agile

process; it could also work with designs that are produced
using more conventional processes.

5 Model usage

With the model defined, it is now possible to address the five
findings introduced at the beginning of section 3.

5.1 Increments

A typical agile development process delivers functionality in
predefined increments; core functionality first, with
performance, interoperability and full functionality reserved
for subsequent increments. The architecture is often
refactored to accommodate performance and advanced
functionality. For this to work in the high-integrity
environment, the safety analysis process is divided into two
parts – one “success-directed” part to ensure that correct, safe
behaviour is being introduced, and one “failure-directed” part
to ensure that failures, dependencies and common causes (of
failures) are properly addressed. The agile health model
coordinates these two processes:
1. In the “success-directed” part, the contribution of a

function to overall system safety is continually assessed
by the developers of that function using information in
the agile health model. This stage may make use of
automated safety analysis techniques if the cost of
encoding the design in an appropriate representation and
performing the analysis is acceptable for use as rapid
design feedback. This all requires that the development
team include appropriate safety expertise.

2. In the “failure-directed” part, a snapshot of the design is
taken and automated safety analysis techniques are used
to produce safety models such as minimal cut-sets.
Where functionality and components are yet to be
prototyped, the model is extended with explicit
assumptions. The safety engineer would add justification
around these models to identify the basis for acceptance
as a valid representation of the final design, and this may
impose constraints on any refactoring of the architecture.

This aspect of agile development is promising for safety-
critical development, as it brings safety analysis into direct
contact with the iterative design cycle. The use of two
separate processes coordinated over a common model
provides independence in the safety assessment, and it is
expected that the development environment would help to
facilitate independent review.

5.2 Testing infrastructure

In the development of a safety-critical system, there are many
opportunities for feedback. In the engine controller domain,
for example:
• The control system structure can be simulated in a

modern control simulation tool, providing feedback on
the control algorithms and their parameters;

• The state-based control behaviour can be modelled in a
state-based representation, and scenarios can be
exercised;

• Code can be downloaded onto the target platform to test
conformance with operating system, memory and timing
resource limits.

For these activities to benefit from the agile environment, the
tools must be amenable to incremental model construction.
For example, when additions are made in the models, it must
be obvious when a vital property that was previously
guaranteed has been violated by those additions. None of the
tools that manage models or code provide this type of service,
but some research has been undertaken recently on the topic
of explicit assumptions for Simulink and Stateflow
components [13]. This type of technology would be vital for
agile development of safety-critical systems. The explicit
health model may help in framing the problem of recording
appropriate assumptions for the tools to check.

5.3 Guidance and training

The agile health model provides a powerful mechanism for
the documentation of assumptions and communication among
different disciplines. This helps to solve the problem of
managing different customers with different needs, by
ensuring that everything is explicitly documented. In addition
to this, therefore, training and guidance must be carefully
tailored:
• Guidance should be given on the parts of the model

appropriate for each stakeholder at each stage of the
process. If possible, this should be reinforced with model
viewpoints and domain-specific model presentation.

• An agile process typically uses an on-site customer
representative to act as the day-to-day requirements
stakeholder. This may be a member of the customer
organisation, or it could be a designated proxy. The FAA
system of designated engineering representatives (DERs)
and EASA’s compliance verification engineers (CVEs)
operate in a similar manner, indicating that the practice is
broadly compatible with the domain. Training should
include the use of the agile health model to identify
situations in which a customer representative can be
effective.

• Using a radically different approach such as the agile
health model means a serious change in culture. Training
should be focused on managing this culture change and
mitigating the risk of failure to change.

5.4 Independence

With the increase in automation for safety analysis –
especially with newer techniques such as AltaRica [14] and
HiP-HOPS [5] – there is a concern that the role of the safety
analyst could be subsumed by the system and software
engineers and the automated tools. In this situation, there is a
loss of independence; the same stakeholders are responsible
for both creating the system and demonstrating that it is safe.
There may be many more opportunities to miss important
dependencies and assumptions.

Independence is already found in several agile methodologies.
In extreme programming, for example, the pair programming
practice requires independent agreement on the production of
correct code. It was suggested in the original assessment [4]
that a form of “pair analysis” could be used for high-integrity
systems development. With an agile health model in place,
this analysis can operate in two different ways:

• Safety analysts and development engineers work in front

of a single workstation. The systems engineer or software
engineer makes design choices and updates the design
model, which is reflected in the agile health model.
Automated consistency checking and keen observation
by the safety analyst indicate where changes to the design
model have an effect on the current safety analysis.
When this occurs, the safety analyst takes over, switches
to the safety view, and assesses the impact of the
changes. This could lead to identification of derived
(safety) requirements, to be fed into the current
development and also collected together for formal
review. Having created new requirements or advised on
undesirable consequences, the parties switch places and
development continues.

• Safety analysts and development engineers work at
separate workstations viewing the same agile health
model. As the system or software engineer makes
changes to the model, automated consistency checks and
observation identify possible effects on the safety
analysis. The safety analyst takes a snapshot of the
design and subjects it to appropriate manual and
automatic analyses to determine the effect of the changes.
These are fed back in real time to the designer as
potential derived (safety) requirements and observations,
as noted in the previous paragraph. The parties may also
confer using instant message technology to query
changes and to resolve design issues; the logs of these
conversations help to justify the eventual result of the
changes.

Both processes require a significant investment in culture
change and tool support to be effective. While the
arrangement does provide a measure of independence,
certification representatives would have to be consulted to
determine whether the independence of process sufficiently
offsets the close interaction of the models.

5.5 Integration

The Agile manifesto outlines four general trends that govern
agility [3], presented in the introduction to this paper. These
are phrased as values; one facet of development is valued
over another because of its positive effect on the delivery of
software projects. For each of these four statements, the agile
health model also provides a way for safety-critical
development to fulfil the requirements of agility:

• Individuals and interactions over processes and tools.

The agile health model provides specific information required
by different individuals. By consolidating the various types
of information needed for safety-critical systems development
in a single model, it facilitates communication between those
individuals. The model also plays a role in shaping the
domain-specific language of each participant, improving their
overall communication bandwidth.

• Working software over comprehensive documentation.
Rapid updates to the derived safety requirements help the
software engineer to ensure that the functionality deployed
incrementally in the software is representative of the final
state of the system. The key difference with the majority of
agile development is that the software is immediately
validated in the customer environment whenever a function is
delivered; in the safety-critical domain a suitable proxy
environment would be needed (e.g. an engine simulator
instead of an actual installed engine).

• Customer collaboration over contract negotiation.
The agile health model does not directly influence this
particular value. However, a case can be made for its ability
to facilitate discussion with the customer, especially if used in
conjunction with a simulation environment for validation.

• Responding to change over following a plan.
For certification, there must always be an overall
development plan; in agile methods, a distinction is made
between the overall programme of phased function delivery
and the day-to-day iterative, incremental development
process. The scenarios outlined in section 5.4 identify exactly
how the agile health model can be used in responding to
change – fulfilling the process in the small – while also
supporting the certification requirements by feeding separate
analysis and validation processes.

6 Conclusion

We have investigated the relationship between safety and
agility by comparing it with existing successes in the area of
security and agility. We have shown that while there are
some issues that must be addressed if an agile safety process
is to be attempted, none of those issues will completely
prevent agility and safety from working together. The
particular issues that will drive further work in this area are as
follows:

• There must be consultation with certification authorities

to demonstrate that the process provides at least the same
levels of confidence and independence as existing
development processes.

• A suitable collaborative working, simulation and
validation environment must be developed to facilitate
the process within a complex safety-critical domain.

• A system of designated representatives must be devised
to allow the consideration of needs from disparate
organisations. For example, an engine controller
development may involve computing hardware suppliers,

sensor and actuator manufacturers, thrust reverser
manufacturers, performance engineers, mechanical
engineers, airframe manufacturers, certification
authorities and airlines. A single representative is
unlikely to suffice.

• The agile methodology is a significant change to the
established organisational culture of a safety-critical
systems vendor. There are likely to be many specific
issues that must be addressed when considering agility in
the context of a safety-critical organisation.

The bottom line for the adoption of an agile methodology is
to demonstrate that there will be a return on investment. In
the world of safety-critical projects, where development
cycles last well over a year, some thought must be given to
the way in which the process is demonstrated, with
confidence, to provide significant savings.

Acknowledgements

The work reported in this paper is part of a research
programme at the Rolls-Royce UTC in Systems and Software
Engineering, University of York. We are grateful to Rolls-
Royce plc. for their support.

References

[1] K. Beznosov. “Extreme Security Engineering: On
Employing XP Practices to Achieve “Good Enough
Security” without Defining It”, First ACM Workshop on
Business Driven Security Engineering (BizSec), Fairfax
VA (2003)

[2] H. Chivers, R.F. Paige, and X. Ge. “Agile Security via
an Incremental Security Architecture”, LNCS 3556,
(June 2005)

[3] R. C. Martin. “Agile Software Development: Principles,
Patterns and Practices”, Prentice Hall (October 2002)

[4] R. F. Paige, H. Chivers, J. A. McDermid, Z R
Stephenson. “High-Integrity Extreme Programming”,
Symposium on Applied Computing, Santa Fe (March
2005)

[5] Y. Papadopoulos, M. Maruhn. “Model-based Automated
Synthesis of Fault Trees from Matlab-Simulink
Models”, International Conference on Dependable
Systems and Networks, Gothenburg (July 2001)

[6] SSE-CMM. “Systems Security Engineering Capability
Maturity Model, Model Description Document Version
3.0”, http://www.sse-cmm.org/docs/ssecmmv3final.pdf,
(acc. October 2005)

[7] J. Wäyrynen, M. Bodén, G. Boström. “Security
Engineering and eXtreme Programming: An Impossible
Marriage?”, LNCS 3134, pp117-128 (2004)

[8] L. Williams, A. Cockburn. “Agile Software
Development: It’s about Feedback and Change”, IEEE
Computer, 36(6), pp 39-43 (June 2003)

[9] A. Bozzano, A. Villafiorita, O. Åkerlund et al. “ESACS:
An Integrated Methodology for Design and Safety

Analysis of Complex Systems”, Proceedings of ESREL
2003 (June 2003)

[10] SAE. “Certification Considerations for Highly
Integrated or Complex Aircraft Systems”, ARP4754
(November 1996)

[11] SAE. “Guidelines and Methods for Conducting the
Safety Assessment Process on Civil Airborne Systems
and Equipment”, ARP4761 (December 1996)

[12] S. W. Ambler, R. Jeffries. “Agile Modeling: Effective
Practices for Extreme Programming and the Unified
Process”, Wiley (March 2002)

[13] A. Galloway, I. Toyn, F. Iwu, J. A. McDermid. “The
Simulink/Stateflow Analyser”, FAA and Embry-Riddle
Aeronautical University (ERAU) Software Tools
Workshop, Florida, USA (May 2004)

[14] P. Bieber, C. Bougnol, C. Castel et al. “Safety
Assessment with AltaRica – Lessons Learnt Based on
Two Aircraft System Studies”, Proceedings of the 18th
IFIP World Computer Congress Topical Day on New
Methods for Avionics Certification (August 2004)

