Flexibility and Manageability of IMS Projects

Zoé Stephenson, Mark Nicholson, John McDermid; University of York Department of Computer Science;
Heslington, York, YO10 5DD, UK

Keywords: Safety-related, evolution, standards
Abstract

In the past few years, Integrated Modular Systems (IMS) have been increasingly seen as a way of reducing the cost
associated with computing in high-integrity control applications. An IMS is a network of computational nodes,
sensors (with redundancy) and actuators. This type of system uses specific software architectures and configuration
processes to allow the deployment of the control application in different arrangements. Eventually, it will be
commonplace for IMS software to reconfigure during operation - an eventuality for which it would be prudent to
prepare.

Previous work (ref. 1) compared IMS concepts with the idea of staged product lines (ref. 2). The product line model
shows particular issues for technology support, processes and change management; our analysis indicates ways in
which IMS software and configuration processes could be modified so that they are able to support the full range of
possible IMS characteristics from fixed-configuration systems based on hardware-specific integration to fully-
reconfigurable logical partition-based systems.

To continue this strand of work, we assess representative processes, architectures and standards for IMS
development against these particular recommendations. The results are able to show any limitations that are imposed
on these projects with respect to the flexibility of the IMS support infrastructure. From these results, further specific
recommendations can be made regarding the future of IMS development and accompanying processes and
standards.

Introduction

In the safety-critical domain, Integrated Modular Systems (IMS) technology is increasingly being used as an
implementation platform. An IMS is a networked computer system providing embedded control and monitoring
functions within a platform such as a car or an aircraft (ref. 3). The use of such systems in vehicles means that the
control and monitoring functions are potentially safety-critical, so system health monitoring and reconfiguration are
primary concerns in the IMS infrastructure. The networked computing environment provides many different
opportunities to reconfigure in response to faults and errors arising in the system. Reconfiguration is typically
handled by a program manager and a database of available configurations within each execution node in the
network; the configurations are generally calculated offline and their identification may involve a number of search
techniques (refs. 4-5). Reconfiguration requires the trigger to be identified (such as a failure), the appropriate next
configuration to be identified and a safe transition process to be enacted.

When developing a safety-critical system, one of the most challenging trade-offs is between flexibility, safety and
cost. An increase in flexibility can reduce design cost, but carries with it a risk of increased cost in assessing for
safety. For example, a change to a component that adds a new dependency on information from another component
can radically alter the propagation of failure modes and the presence of common cause failures. A technology such
as IMS leverages reuse to improve flexibility and reduce cost while maintaining levels of safety. A previous paper
(ref. 1) identified a way of analysing the IMS configuration process to identify flexibility requirements so that
particular types of change that were deemed likely in the evolution of IMS are already catered for in the supporting
configuration and application infrastructure. This reduces the risk that changes to the configuration technology will
be needed, and hence reduces the overall cost associated with reusing the configuration technology on multiple
projects. Reuse of configuration technology also has associated benefits in reducing the cost of training and
increasing the opportunities to transfer skills between projects. The recommendations are reproduced here for
convenience:

e The same configuration process and language should be used, regardless of the functional integration
approach.

e The initialization interface for all software components should support initialization within any planned
partitioning scheme.

e The system should always carry a configuration graph component, with an interface to the program
manager that it is not sensitive to the number of available configurations; it should also not be overly
inefficient to use the interface when there is only one configuration.

e A mode-sensing component should be included to map between operational modes and failures and the
types of configuration calculation and authorization that may be used. This encapsulates knowledge about
the relationships between particular modes and failures and the reconfiguration process.

e The description of a configuration must include partition failures and restarts, and the configuration
calculation process must have an interface to access the partition restart history of the system.

e The interface to the configuration graph structure should cater for different (preconfigured vs. online
calculation) approaches to configuration calculation; in particular, it should be possible to specify a time-
limit for any calculation.

In this paper, the focus is on the comparison of these recommendations with established standards and projects. In
the following section we briefly introduce the scope and applicability of the various standards that affect the
development of an IMS project. The subsequent sections compare the standards with the recommendations given
above, describe some aspects of an actual IMS implementation with respect to the recommendations, and then
summarise with ideas for further work. Throughout this paper, the focus will rest on avionics standards, although the
recommendations listed above should also apply to other domains.

Standards

ARINC 653: The ARINC 653 standard (ref. 6) is the Avionics Application Software Standard Interface. It consists
of three parts, detailing Required Services, Extended Services and Conformity Test Specification; the work in this
paper considers the Required Services part, ARINC 653-1. The standard defines a uniform “Application Executive”
(APEX) interface between the application and operating system of an avionics computer system. It defines both the
calling mechanism and the services to be provided through that mechanism.

The part of ARINC 653 most often referred to in IMS literature is the specification of time and space partitioning
measures. The application is divided into partitions that are allocated to different memory blocks and scheduling
time slots. The APEX interfaces provide services to the applications such as inter-application communication, error
handling and hardware device communication.

ARINC 653 is designed from a safety viewpoint; hence its structure is generally one of non-interference and
analysability. It is generally applicable to modular aerospace control software, but there is a planned progression
from highly critical applications using only essential services to less critical, more general-purpose applications
using a variety of operating system services.

ASAAC: The Allied Standard Avionics Architecture Council is a consortium of aerospace organisations from the
UK, France and Germany. The ASAAC standard (ref. 7) is published as UK Ministry of Defence Standards and
NATO standards; it is divided into software, communications, common functional modes, packaging and
architecture. Each document describes interface standards to help alleviate problems of complexity and
obsolescence, ranging from physical concerns such as the rack size and electrical connections through open network
standards all the way to software programming interfaces.

The ASAAC software API considers many features that are not described in ARINC 653-1, such as file handling,
threads and debugging. Its interfaces may be translated into calls to ARINC 653 services where appropriate. The
standard applies across a range of avionics equipment and applications.

DO-297: Guidance on the certification issues of integrated modular systems in avionics applications is available
from RTCA/EUROCAE as DO-297, “Integrated Modular Avionics (IMA) Development Guidance and Certification
Considerations” (ref. 8). This guidance has been drawn up to inform those involved in the design, implementation,
approval and continued airworthiness of integrated modular systems in civil aerospace certification projects. The
guidance clarifies how the use of IMS technologies alters the way in which civil aerospace products are planned,
developed and assured.

Comparison of Standards

Language: “The same configuration process and language should be used, regardless of the functional integration
approach.”

Motivation: The integration approach is concerned with the dependencies between the application and the various
hardware devices that are used. The diagram in Fig. 1 shows two possible arrangements. Fig. 1(a) is a structure in
which application components are largely associated with specific hardware items, and Fig. 1(b) is a more functional
scheme where functions communicate with hardware as necessary. The diagram indicates through shape and
shading the actual provision of end-user functionality. For example, an engine controller’s thrust limitation
functionality would traditionally be spread across several fault-accommodation components and the thrust reverser
control components; in a functional integration scheme, that responsibility could be encapsulated in a single
application. The configuration language should remain independent of the integration approach used.

| = | | XX‘ | = 81 | mOL s | e
Al —H"A2 — A3 |+ A4
o™ o h T
£ £ £ OS interface - o ™ -
‘ os ‘ ‘ 0s ‘
HW interface
H1 H2 H3 H4 H1 H2 H3 H4
(a) Physical Integration: (b) Functional Integration:
functionality aligned to traditional functionality encapsulated with
federated system boundaries minimal dependency

Figure 1 — Physical versus Functional Integration
Coloured symbols mark provided functionality

ARINC 653: The standard identifies a System Integrator role, with responsibility for ensuring that configuration
tables for message routing, memory and time slicing are properly defined. However, the standard does not specify
the implementation of the configuration process. From the perspective of the APEX interfaces, the difference
between physical and functional integration is simply a difference in the communication between the physical
devices and the applications — it is expected that there will be fewer such connections for physical integration, and
more connections for a more logical integration scheme. This effect can be seen at the “OS interface” boundary,
where there are more connections in Fig. 1(b) than in Fig. 1(a).

ASAAC: ASAAC considers configurations in terms of blueprints describing the allocation of threads, processes,
schedules and virtual channels (ref. 10). There is no specific configuration language specified for blueprints within
the standard. The treatment of processes within the standard will not be affected by a change from physical to
functional integration.

DO-297: The standard is concerned with the qualification of tools that generate configuration data and the processes
by which the configuration is loaded into the system and shown to be a correct configuration for which certification
has been obtained. From the viewpoint of the configuration language, the tools that process such languages should
be qualified to work on any integration approach so that changes to the approach do not require requalification of the

tools — although the upcoming DO-178C update to the DO-178B standard (ref. 9) does include new considerations
for the validation of tool-generated suggestions that would also mitigate against this phenomenon. The process of
demonstrating correctness of the configuration is expected to be unaffected by the type of integration approach used.

Best Practice: An organisation deploying IMS should ensure that the current and future integration approaches have
been investigated and that any configuration technology designed for long-term use is able to handle any of those
planned integration approaches. Most existing configuration tools operate on generic component concepts without
specific classification according to hardware dependency, so this recommendation is expected to be met in a
majority of IMS projects.

Initialisation: “The initialization interface for all software components should support initialization within any
planned partitioning scheme.”

Motivation: There is a small possibility that the initialisation interface of the component and the context within
which it is initialised — items such as process basepages, parameters, environment definitions or stack structures —
may vary depending on the way in which partitions are created. If a physical partitioning scheme is used, the process
could be initiated directly from the operating system of the partition; with a logical partitioning scheme, other
software would have been invoked to set up the partitions, so it may use a different loader and invocation to start
processes. This recommendation is in place to check that there is no such dependency in the deployed system.

ARINC 653: Partitions are started using a single main program; the program is responsible for announcing further
processes within that partition. This reduces dependency on an OS-specific process description data structure. The
standard discusses various mechanisms for storing and configuring the process attribute data before its use in
announcing processes. This should result in a situation where the partitioning scheme influences configuration data
but not the main program itself. The actual interface through which the main program is initialised is not specified,
and is assumed to be specific to the linker and libraries for a particular platform.

ASAAC: The standard does not supply a specific interface for the initialisation of software by operating system
services, except for a general-purpose ‘start thread’ call as part of the management of multi-threaded processes. It is
assumed that process initialisation will be specific to the tool chain used to deploy the software.

DO-297: There are no certification concerns in DO-297 that are specific to the context of the component
initialisation interface. There are concerns that deal with the correct initiation and termination of processes and the
ability of processes to influence one another’s execution, especially when considering cross-partition processes that
are able to initialise partition boundaries. None of these issues define the linking mechanism by which the process is
loaded and started, however.

Best Practice: IMS standards do not currently address this issue. The organisation should ensure that a standard
initialisation context and interface is defined for the components deployed on their IMS systems, and either the
organisation or its suppliers should build the necessary adapters to isolate the software processes from dependencies
on the initialisation interface.

Graph Component: “The system should always carry a configuration graph component, with an interface to the
program manager that it is not sensitive to the number of available configurations; it should also not be overly
inefficient to use the interface when there is only one configuration.”

Motivation: There is a general trend towards more adaptable and dynamic software, and eventually this will be
reflected in the configuration of IMS, with online configuration calculations using advanced optimisation and
intelligence techniques being employed. To ensure that the configuration infrastructure is able to cope with this
eventuality, the configuration specification should be encapsulated within an active component that is accessed
through an interface that does not impose undue overhead in situations where there are relatively few configurations.

ARINC 653: The standard uses the concept of a configuration table, a static data object accessible by the operating
system but not built into the operating system, and hidden from applications. It specifies operating system
configuration for a module and its partitions such as the ports, channels and processes that are in use. The
combination of modules to make a system also requires a system-level configuration process, and that is outside of

the scope of the standard. From this perspective, ARINC 653 provides a separate configuration graph component
with constant-time access to an arbitrary number of configurations, but only as a passive memory-based lookup.

ASAAC: The configuration graph is accessed through the active SMBP (System Management to Blueprints)
interface, abstracting away from the storage of the data. The standard does not specify any constraints on the
computational complexity of the access through this interface.

DO-297: The DO-297 standard identifies the need to demonstrate that the configuration installed on the aircraft is
that for which the certification was issued, which implies an identifiable component that records that configuration.
Once dynamic reconfiguration options are considered, this may invoke the parts of DO-297 that deal with the
qualification of reusable components.

Best Practice: The organisation adopting IMS should be aware of the computational complexity associated with
accesses to configuration data, and take measures to ensure that the complexity is bounded — ideally within a linear-
time bound. For ARINC 653-1, the organisation should also invest in a separate software component to encapsulate
the access to the configuration data, isolating changes to the format of the data and the methods by which a
configuration is computed from the data.

Mode Sense: “A mode-sensing component should be included to map between operational modes and failures and
the types of configuration calculation and authorization that may be used. This encapsulates knowledge about the
relationships between particular modes and failures and the reconfiguration process.”

Motivation: Consider the situation where an inefficiency is detected in a number of sensors, and a new configuration
is sought that makes the best possible use of the combination of efficient and inefficient sensors to maintain the best
possible fuel efficiency and the lowest possible emissions. This is an optimisation calculation that could take some
time, but the move to this new configuration is not critical — the system can function for quite some time before
moving into this new, more efficient configuration. Now consider the situation where a fire is detected in an engine.
A new configuration is sought in which fuel is no longer supplied to the engine, and this is a calculation that is
required immediately. To manage an advanced IMS product in which a range of events can prompt a
reconfiguration, there must be some knowledge of the relationship between reconfiguration-triggering events and
the allowed methods of calculation. This is encapsulated in a mode-sensing component.

ARINC 653: ARINC 653 identifies in its system architecture the presence of health monitoring and built-in test
equipment. It also calls for a system health management table under the control of the system integrator. Provision is
made for process, partition and module-level errors, and the standard identifies the need to have specific recovery
actions such as starting and stopping processes or restarting partitions. No definitive list of responses to failures is
given; the XML schema for configuration data refers to an Error_ID_Action containing an Action of type
ModuleActionType, but this type is not defined further in the standard. It would be possible to use a separate data
item to define the coupling between events and reconfigurations, and to make this available to health management
callbacks in the various partitions, effectively encapsulating the control logic in a small number of components. The
standard does not mandate any such system, however.

ASAAC: ASAAC provides a set of calls that manage dialogue between the application-level configuration
management (AM) and the configuration management for the module (GSM). The configurations are represented
with a set of static identifiers. There are two options for the placement of mode sensing — either within the GSM to
process configuration identifiers and optimise the configuration dynamically or within the blueprint database access
mechanisms themselves. Neither mechanism is constrained by the standard.

DO-297: There are no specific constraints in the standard that affect the use of mode-specific configuration
calculations, except that the standard is written with field-loading of configuration data during maintenance as the
most dynamic and flexible means of reconfiguring the system. Any component that takes on the responsibility for
dictating the type of reconfiguration calculation to make also takes on a measure of authority for reconfiguration,
which should be considered when addressing the safety of the system. Some initial ideas in this area have already
been considered (ref. 10).

Best Practice: There should be provision within the software architecture of an IMS for the inclusion of a mode-
sensing component. The organisation should identify where such a component would be located and analyse its

dependencies. The relationship between the authority held by such a component and the overall authority for
reconfiguration should be made explicit and taken into account during safety analysis.

Configuration History: “The description of a configuration must include partition failures and restarts, and the
configuration calculation process must have an interface to access the partition restart history of the system.”

Motivation: There is a possibility with reconfiguration of either getting stuck or oscillating between configurations.
For example, there may be one configuration in which control is severely degraded, making use of only a few
sensors. A reconfiguration to a more sophisticated control mode makes use of a larger set of sensors, including one
which is faulty. The faulty sensor then indicates a failure and the system is reconfigured back into the degraded
state, where it now loses information about the faulty sensor. This cycle could continue, compromising the actual
purpose of the system by thrashing between configurations. Hence, some knowledge of previous configurations, in
particular failures and restarts, would be useful in determining a useful configuration.

ARINC 653: There are no specific provisions in the XML schema for configuration to allow for configuration
history, but the standard does allow for the schema to be extended to include new capabilities.

ASAAC: The descriptions given in the grammar for blueprint data make no provision for configuration history.

DO-297: There are no specific considerations that address the precise interface by which configurations are
described. If there is a dependency between configuration calculation and the configuration history, this should be
documented in advance and the dependency should be included in the overall analysis of failures to show that there
is no adverse effect from its presence.

Best Practice: An organisation intending to use IMS for failure-handling reconfiguration must ensure that the
problems outlined in the motivation section have been addressed. There must be analysis to show whether the
configuration scheme may suffer from this cyclic phenomenon; if so, the agents responsible for reconfiguration must
be able to intervene in cases where configurations repeat themselves. This could be an additional authority within
the reconfiguration system, or operator authority for those reconfigurations that could suffer from the repeating
phenomenon.

Graph Interface: “The interface to the graph structure should cater for different (preconfigured vs. online
calculation) approaches to configuration calculation; in particular, it should be possible to specify a time-limit for
any calculation.”

Motivation: Some types of configuration calculation may take time to arrive at a satisfactory outcome. Other types
of configuration are quicker, but not necessarily optimised to meet a range of competing criteria. To allow for the
best possible configuration within a particular time period, it must be possible to specify that time period when
requesting the calculation. For example, the configuration calculation component could use an approximation or
interpolation to arrive at a reasonable configuration immediately, and then spend the rest of the available time
searching for an improved configuration.

ARINC 653: ARINC 653 does not specify any interface mechanism other than access to a static configuration table.
However, the XML schema for configuration is extensible and could be adapted to identify alternative mechanisms.
In this case, partition restarts and timeouts could be specified in the schema, but there would need to be a
corresponding provision within the OS itself. Any changes to the schema would also require significant research to
demonstrate their correctness and usefulness.

ASAAC: The communication between application, health monitoring and configuration management is limited to
single static identifiers to label configurations. The ASAAC standard does not impose any further meaning on these
identifiers; some additional interpretation would have to be added to use certain bits in the identifier to encode
configuration calculation information.

DO-297: The guidance calls attention to the specification and demonstration of timing issues in modules. The use of
time-limited calculations would naturally flow down from the overall timing concerns for the platform. There are no
limitations placed by this standard on the interfacing used to achieve this, however.

Best Practice: The organisation using IMS should investigate the interfacing requirements for configuration
calculation and include the various options within the interfaces used in IMS products. This may involve the
specification of a “wider” interface that is used internally, and mapped onto the narrower interface for configuration
look-up. Future changes to the data stored in configurations and the way configurations are calculated would be
contained behind this interface.

Summary of Findings: The standards generally give no specific guidance for configuration calculation mechanisms.
There is a general assumption within the standards that the configuration will be derived from data tables loaded into
the system during installation or on-ground preparation. DO-297 specifies comprehensively those parts of the
existing standards that relate to each part of a particular model of IMS; this model also includes no dynamic
reconfiguration, so the recommendations under consideration in this paper are mostly outside of its scope. None of
the recommendations were found to directly conflict with any of the guidance given in the standards.

Recommendations in Practice

We were fortunate to be able to study an example of an aerospace project at BAE Systems using IMS as its
deployment platform. Commercial considerations prevent the disclosure of many of the details of the IMS
implementation, but the general discussion that follows is indicative of the issues being faced in contemporary
systems development.

Language: “The same configuration process and language should be used, regardless of the functional integration
approach.”

The general approach to application specification is to consider a decomposition based on functional concerns rather
than necessarily binding particular software and hardware elements together. The data formats used for the
representation of the hardware and software elements are general-purpose enough to cope with either type of
integration.

Initialisation: “The initialization interface for all software components should support initialization within any
planned partitioning scheme.”

The general principles of separation of concerns and information hiding combine to ensure that only the operating
system needs to know how the system is partitioned. There are no specific details of partition location or sharing
passed on to the applications; they simply communicate over the various channels that are provided, and assume that
the system has been correctly configured by the system designer. While there are issues here to do with the overall
system health monitoring and reconfiguration, they are outside of the scope of the recommendations.

Graph Component: “The system should always carry a configuration graph component, with an interface to the
program manager that it is not sensitive to the number of available configurations; it should also not be overly
inefficient to use the interface when there is only one configuration.”

The ASAAC approach is used on this particular project, with configuration data accessed over a dedicated
programming interface. The particular implementation used does not impose a performance penalty for large
configuration graphs.

Mode Sense: “A mode-sensing component should be included to map between operational modes and failures and
the types of configuration calculation and authorization that may be used. This encapsulates knowledge about the
relationships between particular modes and failures and the reconfiguration process.”

The existing interface is not capable of requesting a particular type of information, so the project does not currently
have extensibility that supports this recommendation. However, the need for such a facility had already prompted
research work in the area of configuration calculation methods before the study reported in this paper was
conducted.

Configuration History: “The description of a configuration must include partition failures and restarts, and the
configuration calculation process must have an interface to access the partition restart history of the system.”

There are currently no plans to include configuration history directly into the local configuration process, but the
project does use a hierarchical structure of system manager components. This would allow the introduction of
configuration history into the system-level configuration management components without necessarily affecting the
behaviour of the local components. This level of coordination could ensure that the configuration does not “stick™ on
a single configuration that causes restarts, nor oscillate between configurations that fulfil competing criteria.

Graph Interface: “The interface to the graph structure should cater for different (preconfigured vs. online
calculation) approaches to configuration calculation; in particular, it should be possible to specify a time-limit for
any calculation.”

The philosophy on the current project is one of static configuration, so the issues of time limits and alternative
configuration schemes have not been directly addressed. The underlying technology uses a general-purpose state
machine representation, and this is the area that would need to be adapted to accommodate alternative configuration
techniques.

Conclusions and Further Work

This paper has taken a set of recommendations for flexibility in IMS configuration and compared those
recommendations with the constraints imposed by relevant standards in the avionics domain. The findings show no
major issues that prevent the implementation of the recommendations, although some aspects of such an exercise
would not be trivial. The following challenges can be identified from the comparisons discussed above:

Configuration History: The configuration process should have a way to take the configuration history into account.
This may be a direct, local coupling between the component responsible for deciding on the configuration and a
stored list of previous configurations; it may also be the responsibility of a remote configuration component. The
arrangement should be chosen based on safety analysis of the configuration architecture. Of particular concern is the
possibility that a local component with responsibility for reconfiguration could produce an unnecessary
reconfiguration (in SHARD terms (ref. 11), a commission failure).

Configuration Calculation Method: The eventual outcome of IMS deployment could be a full-calculation
configuration manager, using a combination of intelligence and optimisation techniques to adapt the configuration to
the environment and system health. If an organisation really embraces the possibilities of IMS, it would be
advantageous to consider support for such techniques in the architectures and configuration systems in current use.
Deciding on the right trade-off between dealing with present concerns and incurring cost by considering future
possibilities is an interesting research challenge.

Precedent: Each advance in configuration capability represents a precedent to be set by the organisation applying for
certification. As with any change in the safety-critical area, this represents an additional cost, especially for the
recommendations given in this paper that lie outside of the existing scope of the standards. Analysing the costs and
benefits of these recommendations will be crucial to their acceptance and deployment in an industrial setting.

In addition to these challenges, the six recommendations were originally produced through an analysis process based
on a staged product line model. It would be appropriate to consider ways in which organisations can develop product
lines of IMS applications. The recommendations provide flexibility and some degree of insulation from future
technology changes in IMS configuration, but changes in required system functionality will still need to be
managed.

One possible view is to consider product lines as a way of providing a constrained context within which to reuse
application components. The product line scope identifies the exact context within which components will be
reused, enabling the rapid construction of a reuse library and maximising return on investment. When developing
reusable software components for avionics applications, there is a need to declare the context of reuse in advance as
part of the overall development plan. Product line analysis would seem to provide a perfect way of identifying this
context of reuse, and enabling the development of reusable software components to improve flexibility while
minimising the risk of incurring increased cost. The product line analysis also provides a feature model to show the

different configurations in which component functionality will be inactive, helping to plan the process of
demonstrating during integration testing that such functionality is not inadvertently enabled.

Acknowledgements

The work presented in this paper was conducted as part of the ongoing research of the Rolls-Royce UTC in Systems
and Software Engineering at the University of York, with technical details provided by representatives of BAE
Systems. We are grateful to these industrial partners for their support.

References

1. Stephenson, Z.; Nicholson, M.; McDermid, J. A. Product Line Recommendations for Integrated Modular
Systems Proceedings of the 23" International System Safety Conference, San Diego, September 2005

2. Czarnecki, K.; Helsen, S.; Eisenecker, U. Staged Configuration Through Specialization and Multi-Level
Configuration of Feature Models. Software Process Improvement and Practice volume 10(2). 2005.

3. WIlad, J. A New Generation in Aircraft Avionics Design. ECE Magazine, May 2005, pp14-17.

4. Nicholson, M. Selecting a Topology for Safety-Critical Real-Time Control Systems. Department of Computer
Science University of York U.K., 1998.

5. Strunk, E.A.; Knight, J. C. Distributed Reconfigurable Avionics Architectures. 23rd Digital Avionics Systems
Conference, Salt Lake City, UT, USA. 2004

6. ARINC. ARINC 653-1 Avionics Application Software Standard Interface. October 2003.

7. ASAAC. ASAAC Phase |l Stage 2, Second draft of proposed quidelines for system issues — Volume 2: Fault
Management. REF-WP: 32350, 2002

8. RTCA/EUROCAE. Integrated Modular Avionics (IMA) Development Guidance and Certification
Considerations DO-297, August 2005.

9. RTCA/EUROCAE. Software Considerations in Airborne Systems and Equipment Certification DO-178B/ED-
12B, December 1992.

10. Jolliffe, G. Exploring the Possibilities Towards a Preliminary Safety Case for IMA Blueprints Proceedings of
the 23" International System Safety Conference, San Diego, September 2005.

11. Fenelon, P.; Nicholson, M.; McDermid, J. A., Pumfrey, D.. Towards Integrated Safety Analysis and Design
SIGAPP Applied Computing Review, 2(1), 1994, pp21-32.

Biography

Zoé Stephenson, High-Integrity Systems Engineering Group, Department of Computer Science University of York
Heslington, York Y010 5DD, United Kingdom, telephone — +44 1904 432749, facsimile — +44 1904 432708, email
— zoe.stephenson@cs.york.ac.uk

Zoé Stephenson graduated from the University of York with a first-class honours degree in Computer Science. She
has previously worked as a research student funded through an EPSRC CASE studentship with Rolls-Royce plc., on
the Converse project, part of the EPSRC Systems Engineering for Business Process Change managed research
programme. Work has been targeted at the development of an embedded systems software engineering process that
is capable of operating over a complete product line. She is now working in the Rolls-Royce UTC in Systems and
Software Engineering on flexible system and software modelling technology and processes.

Mark Nicholson, High-Integrity Systems Engineering Group, Department of Computer Science University of York
Heslington, York YO10 5DD, United Kingdom, telephone — +44 1904 432789, facsimile — +44 1904 432708, email
— mark.nicholson@cs.york.ac.uk

Mark Nicholson is a Research and Teaching Fellow in System Safety Engineering in the Department of Computer
Science at the University of York. He co-ordinates the Masters and postgraduate certificate programs in System
Safety and Safety-Critical System Engineering in the Department. He is a member of EUROCAE WG63 updating
the aerospace recommended practices 4754 / 4761. He has been researching safety-critical systems for more than 10
years. His doctoral research focused upon issues surrounding the selection of architectural structures with
appropriate reliability, timing and safety characteristics.

John McDermid, High-Integrity Systems Engineering Group, Department of Computer Science University of York
Heslington, York Y010 5DD, United Kingdom, telephone — +44 1904 432726, facsimile — +44 1904 432708, email
— john.mcdermid@cs.york.ac.uk

John McDermid has been Professor of Software Engineering at the University of York since 1987 where he runs the
high integrity systems engineering (HISE) research group. HISE studies a broad range of issues in systems,
software and safety engineering, and works closely with the UK aerospace industry. Professor McDermid is the
Director of the Rolls-Royce funded University Technology Centre (UTC) in Systems and Software Engineering and
the BAE SYSTEMS-funded Dependable Computing System Centre (DCSC). He is author or editor of 6 books, and
has published about 280 papers.

